

Max-Planck-Institut für Astrophysik

Relativistic outflows from remnants of compact object mergers and their viability for short GRBs

Miguel A. Aloy

In collaboration with: T.-H Janka and E. Müller (find out more @ astro-ph/0408291)

Black hole with accretion torus

Stanford, 16-12-2004

22nd Texas Symposium on Relativistic Astrophysics

Progenitors of short GRBs: setting the stage

Merger of a system of compact binaries (SCBs): (Pacynski, Goodman, Dar, Eichler et al., Mochkovitch et al., etc.)

- After the merger of a SCB a central BH ($M_{BH} \sim 2-3M_{sol}$) girded by a thick accretion torus ($M_{torus} \sim 0.05 0.3M_{sol}$).
- Once the thick disk is formed, up to $\sim 10^{51}$ ergs can be released above the poles of the BH in a region that contains $< 10^{-5}$ M_{sun} of baryonic matter due to v v annihilations preferentially near axis \Rightarrow acceleration to ultrarelativistic speeds.

• If the observed duration T_{obs} is related to the lifetime of the system T_a this kind of events can only belong to the class of short GRBs because $T_{disk} \sim 0.05 - 0.5$ s.

Progenitors of short GRBs: our goals

- 1. The viability of the scenario of merging SCBs for producing ultrarelativistic outflows (winds, jets, radial outflows, canon balls?).
- 2. Mechanism of *collimation* (if any) of the outflowing plasma (typical opening angles and consequences on the observed rate of events).
- 3. Expected durations of the GRB events generated in this framework and their relation to the time during which the source of energy is active (T_a) .

Initial model

Two approaches:

 $M_{torus} \sim 0.17 M_{sun}$

 $M_{env} \sim 10^{-2} M_{sun}$

 $M_{BH} \sim 3 M_{sun}$

Type-A: Put a toroidal-like distribution of matter and angular momentum around a Schwarzschild BH (guided by the Newtonian simulations of Ruffert & Janka 2001) and let it relax to an equilibrium configuration.

Relaxed initial model

Ruffert & Janka (2001), A&A, 380, 544

Aloy, Janka & Müller (2004), astro-ph/0408291

Initial model

Two approaches:

Type-B: Follow Font & Daigne (2003) prescription to build up equilibrium tori around a BH. Outside use Michel (1972) spherical accretion solution.

Ruffert & Janka (2001), A&A, 380, 544

Aloy, Janka & Müller (2004), astro-ph/0408291

Modelling the energy release

Guided by previous results of Janka, Ruffert et al. showing that both in NS-NS mergers (Ruffert & Janka 1999) and in BH-NS mergers (Janka et al. 1999), can be released up to 10^{51} ergs above the poles of the black hole in a region that contains less than 10^{-5} M_{sup} of baryonic matter. The dependence in z-distance is:

 $q(z) = q_0 / z^n; z = r \sin\theta; n \sim 5; \theta_0 \sim [30^\circ, 75^\circ]$

Models explored up to now

- Energy deposition region:

Cone of 30° to 75° around the rotation axis that extends from R_{min} = 1.02 - 2.05 R_s (innermost boundary) to infinity

- Grids: r (log spaced) x (uniform)

Type A: 460 x 200 zones. $R_{max} = 3 \times 10^9 \text{ cm}$ Type B: 500 x 200 zones. $R_{max} = 2 \times 10^{10} \text{ cm}$ (+resolution checks up to 2000x200 zones)

]	Model	$\dot{E} [\mathrm{erg}\mathrm{s}^{-1}]$	$ heta_0$	$v_p [c]$		Γ_{\max}		$ heta_w$		M_f [g]
_				$(10\mathrm{ms})$	$(100\mathrm{ms})$	$(10\mathrm{ms})$	$(100\mathrm{ms})$	$(10\mathrm{ms})$	$(100\mathrm{ms})$	$(100\mathrm{ms})$
-	A01	10^{49}	30°	0.67	0.62	18	18	$< 1^{\circ}$	$< 1^{\circ}$	$4.0 \cdot 10^{15}$
	A02	$2\cdot 10^{50}$	30°	0.63	0.63	81	232	11.3°	6°	$8.8\cdot10^{23}$
	A03	$2\cdot 10^{50}$	45°	0.80	0.67	11	27	9.5°	3.9°	$4.5 \cdot 10^{24}$
<u></u>	A04	$2\cdot 10^{50}$	75°	0.67	-	7	-	8.5°	-	-
ď.	A05	10^{51}	30°	0.99	0.82	84	562	15.0°	15°	$3.5 \cdot 10^{25}$
	A06	10^{51}	45°	0.97	-	80	-	15.8°	-	-
_	A07	10^{51}	75°	0.90	0.60	13	37	12.5°	8.13°	$2.4 \cdot 10^{25}$
	A08	10^{50}	31.4°	0.83	0.70	20	20	3.8°	2.9°	$1.4 \cdot 10^{22}$
	A09	$5\cdot 10^{51}$	30°	0.70	0.97	91	748	23°	26°	$3.3 \cdot 10^{26}$
]	B01	$2 \cdot 10^{50}$	45°	0.995	0.99994	33	247	36°	30°	$5.4 \cdot 10^{24}$
]	B02	$2\cdot 10^{50}$	60°	0.999	0.99995	40	274	35°	21°	$5.0 \cdot 10^{24}$
ן ה	B03	$2\cdot 10^{50}$	75°	0.97	0.998	17	17	9.4°	2.3°	$6.2 \cdot 10^{22}$
90	B04	10^{49}	45°	0.96	0.99991	30	244	30°	18°	$3.2 \cdot 10^{23}$
	B05	10^{51}	45°	0.999	0.99997	33	232	34°	28°	$2.8\cdot 10^{25}$
	B06	10^{50}	41.4°	0.9991	0.99992	40	238	30°	23°	$2.8\cdot 10^{24}$
]	B07	$2.35\cdot 10^{50}$	45°	0.995	0.99996	34	238	35°	28°	$4.0 \cdot 10^{24}$
]	B08	$2.35\cdot 10^{50}$	45°	0.999	0.99996	34	253	33°	24°	$3.8\cdot 10^{24}$

Results

- P_{thr} ~ 10⁴⁸⁻⁴⁹ erg/(s·sr):
 * in the initial model matter falls in through the axis of rotation (v_{in}~0.6c- 0.97c)
 - * model dependent but the feature may be generic
 - * our threshold is probably higher than in real mergers (type-A) or maybe irrelevant in type-B models.

- All the successful models produce relativistic *collimated* outflows:
- \Rightarrow initially the disk provides the collimation via cocoon/disk interaction, i.e., the opening angle of the beam is set by the torus inclination.
 - pure hydrodynamic collimation (no need for B- fields).
 - * For low dE/dt \Rightarrow initial opening angle set after ~ 1-3 ms ($_{j}$ ~ 3-5), but modified later by the high density halo.
 - * For high dE/dt \Rightarrow initial opening angle set after a torus scale-height lightcrossing time (~ 0.5-1 ms) with $_{i}$ ~ 3-5.

Results

- P_{thr} ~ 10⁴⁸⁻⁴⁹ erg/(s·sr):
 * in the initial model matter falls in through the axis of rotation (v_{in}~0.6c- 0.97c)
 - * model dependent but the feature may be generic
 - * our threshold is probably higher than in real mergers (type-A) or maybe irrelevant in type-B models.

- All the successful models produce relativistic *collimated* outflows:
- \Rightarrow initially the disk provides the collimation via cocoon/disk interaction, i.e., the opening angle of the beam is set by the torus inclination.
 - pure hydrodynamic collimation (no need for B- fields).
 - * For low dE/dt \Rightarrow initial opening angle set after ~ 1-3 ms ($_{j}$ ~ 3-5), but modified later by the high density halo.
 - * For high dE/dt \Rightarrow initial opening angle set after a torus scale-height lightcrossing time (~ 0.5-1 ms) with $_{i}$ ~ 3-5.

Results (evolution up to 100 ms)

Type A

Morphology: For P> $P_{thr} \sim 10^{49}$ erg/s the outflows are either knotty, narrow, relativistic jets (P < 10^{51} erg/s) or conical, smooth, wide angle, ultrarelativistic winds (P > 10^{51} erg/s).

Outflow open. half-angle: It is determined by the high density external medium (low P) or by the inclination angle of the side walls of the torus (large P).

Propagation speed: between ~ 0.6c (P < 10^{51} erg/s) and ~0.97c (P > 10^{51} erg/s).

Collimation: (dense) external medium (+ torus).

Results (evolution up to 100 ms) Type B

Morphology: For P> $P_{thr} \sim 10^{48}$ erg/(s-sr) the outflows are always conical, wide angle, ultrarelativistic jets.

Outflow opening half-angle: ~ 20° to 30°. It is determined by the inclination angle of the side walls of the torus (large P/V).

x 10⁹ [cm]

2x10⁵⁰erg/s

45°

10⁴⁹erg/s

B02

60°

0⁵¹erg/s

B03

B06

75°

41.4°

2.4200

1.6800

0.9400

0.2000

t = 0.100 s

Log₁₀ Г

1.33

r x 10⁻⁹ [cm]

Post-switch-off evolution

The typical time scale in which the merging of SCBs may release energy is of some fractions of a second.

We have switched off the energy deposition after $T_a=0.1s$ and followed the subsequent evolution of two models: one of type-A (P=5x10⁵¹ erg/s in $_0=30^\circ$) and another of type-B (P=2x10⁵⁰ erg/s in $_0=45^\circ$).

A condition to produce a successful GRB is: $\Gamma_{\text{front}} \text{ ultrarelativistic } \Leftrightarrow V_{\text{rear}} \leq V_{\text{front}}$ (a)

Type A

Unsuccessful GRB: Condition (a) does not hold because the environment is too dense and the front shock of the fireball decelerates.

Type B

May produce a successful GRB: Condition (a) is $V_{rear} < V_{front}$ in this case. Thus, the fireball stretches radially and, it can produce events with durations of several seconds, i.e., $T_a \ll T_{obs}$.

Post-switch-off evolution. Type-A (merger in high density environment)

108

r [cm]

109

Post-switch-off evolution. Type-A (merger with high density halo)

 $T_{\rm t} \approx 5 \cdot 10^4 \, {\rm K} \, \left(\frac{T_0}{1.5 \cdot 10^9 \, {\rm K}} \right) \left(\frac{\kappa}{\kappa_e} \right)^{-1/2} \, \times$

 $\left(\frac{M}{10^{-5} \,\mathrm{M_{\odot}}}\right)^{-1/2} \left(\frac{R_0}{10^9 \,\mathrm{cm}}\right)$

No GRB, instead: UV-flash.

Assuming adiabatic evolution of the cloud:

$$R_{\rm t} \approx 3 \cdot 10^{13} \; {\rm cm} \; \left(\frac{\kappa}{\kappa_e}\right)^{1/2} \left(\frac{M}{10^{-5} \; {\rm M}_\odot}\right)^{1/2} \label{eq:Rt}$$

$$t_{\rm t} \approx R_{\rm t}/c \approx 10^3 \, {\rm s} \, \left(\frac{\kappa}{\kappa_e}\right)^{1/2} \left(\frac{M}{10^{-5} \, {\rm M}_\odot}\right)^{1/2}$$

Because of the small L_m, only closeby events will be visible $L_{\rm m} \approx 7 \cdot 10^{42} \, {\rm erg \, s^{-1}} \quad \left(\frac{T_0}{1.5 \cdot 10^9 \, {\rm K}}\right)^4 \left(\frac{\kappa}{\kappa_e}\right)^{-1} \times \left(\frac{M}{10^{-5} \, {\rm M}_\odot}\right)^{-1} \left(\frac{R_0}{10^9 \, {\rm cm}}\right)^4$ Post-switch-off evolution. Type-B (merger with low density halo)

 ♦ For P = 2x10⁵⁰ erg/s the Lorentz factor grows up to ~ 1000 in 500 ms.
 ♦ Switching off the energy release leads to an almost selfsimilar growth ⇒ it is possible to produce a successful GRB!

Post-switch-off evolution. Type-B (merger with low density halo)

The fireball has a large internal energy reservoir even after $\sim 5T_a$

- \Rightarrow there is still room for further acceleration
- \Rightarrow no sign of saturation
 - ⇒ internal shocks develope although the resolution at R>10¹⁰ cm is not good enough and a part of the structure created is erased.

Post-switch-off evolution. Type-B

- ⇒ The radially averaged variables display a non-monotonic shape as a function of .
- ⇒ The internal energy as a function of the solid angle is *not constant*.
- ⇒ The sideways expansion in the comoving frame is subsonic.
- ⇒ A part of the fireball is *contracting!*. ⇒ $\theta_{\Gamma>100} \sim 5^{\circ} - 10^{\circ} \Rightarrow E_{iso} \le 10^{51}$ erg.

Post-switch-off evolution. Type-B

 $\Rightarrow \theta_{\Gamma > 100} \sim 5^{\circ} - 10^{\circ} \Rightarrow f_{\Omega} \sim 0.4 - 1.5\% \text{ of the}$ hemisphere $\Rightarrow 10^{50} \leq \mathsf{E}_{\mathsf{iso}} \leq 10^{51} \text{ erg.}$ $\Rightarrow 100 \text{ times more short GRBs than observed}$

(assuming isotropic detectability in all directions within the opening angle)

 $\Rightarrow \theta_{\Gamma>10} \sim 15^{\circ} - 25^{\circ} \Rightarrow f_{\Omega} \sim 7 - 18\% \text{ of the}$ hemisphere $\Rightarrow 10^{49} \leq \mathsf{E}_{\mathsf{iso}} \leq 10^{51} \text{ erg.}$ $\Rightarrow 10 \text{ times more short GRBs than observed}$

⇒ A rate of 100 y⁻¹observed short GRBs yields $10^{-5} (f_{\Omega} / 0.01)^{-1} (Ng/10^9)^{-1} galaxy^{-1} y^{-1} events,$ consistent with estimated NS+NS & NS+BH merger rates ~ 10⁻⁵ (e.g., Kalogera 2004; Fryer et al. 1999; Ghetta & Piran 2004)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Model	E_d [erg]	$\frac{E_{\Gamma>100}}{E_d}$	$\frac{E_{\Gamma>50}}{E_d}$	$\frac{E_{\Gamma>10}}{E_d}$	$\frac{E_{\Gamma>2}}{E_d}$	$\frac{E_{k,\Gamma>100}}{E_d}$	$\Gamma_{\rm max}$	θ_w	M_f [g]	Γ_{∞}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B01	$2 \cdot 10^{49}$	0.29	0.36	0.59	0.70	$4.4 \cdot 10^{-3}$	859	24°	$7.4\cdot10^{24}$	1765
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B02	$2\cdot 10^{49}$	0.09	0.15	0.35	0.48	$4.8 \cdot 10^{-3}$	687	15°	$6.4\cdot10^{24}$	1217
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B03	$2\cdot 10^{49}$	0.00	0.00	$1.2 \cdot 10^{-4}$	0.04	0.00	16	3°	$1.9\cdot 10^{22}$	142
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B04	10^{48}	0.17	0.26	0.52	0.65	$5.1 \cdot 10^{-3}$	492	15°	$3.6\cdot10^{23}$	1601
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B05	10^{50}	0.30	0.37	0.60	0.71	$8.3 \cdot 10^{-3}$	979	25°	$3.6\cdot10^{25}$	1848
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B06	10^{49}	0.19	0.29	0.54	0.66	$3.7 \cdot 10^{-3}$	717	18°	$3.4\cdot10^{24}$	1761
B08 $1.67 \cdot 10^{49}$ 0.18 0.25 0.49 0.60 $4.5 \cdot 10^{-3}$ 789 21° $5.6 \cdot 10^{24}$	B07	$1.65\cdot 10^{49}$	0.14	0.25	0.59	0.72	$3.4 \cdot 10^{-3}$	839	25°	$7.6\cdot10^{24}$	1429
	B08	$1.67\cdot 10^{49}$	0.18	0.25	0.49	0.60	$4.5\cdot10^{-3}$	789	21°	$5.6\cdot10^{24}$	1607

 \Rightarrow 10% - 30% of E_{dep} within $\theta \sim 5^{\circ} - 10^{\circ}$

Concluding remarks:

Releasing energy over the poles at rates above our P_{thr} and with a functional dependence suggested by Janka et al (1999) relativistic ($\Gamma_{max} \sim 1000$), collimated conical/jet-like, outflows are produced.

Collimation: via interaction with the external medium and/or the accretion torus. Aplication of the analytic Levinson & Eichler's collimation mechanism yields wrong results. Typical opening angles: $\theta_{\Gamma>100} \sim 5^{\circ} - 10^{\circ} (\theta_{\Gamma>10} \sim 20^{\circ} - 30^{\circ})$.

∴ An observed rate of 100 y⁻¹ short GRBs needs of 10⁻⁵ galaxy⁻¹ y⁻¹ merger events, which is consistent with estimated NS+NS & NS+BH merger rates.

While mergers in low-density environments successful GRBs can be produced, in high-density media the observational signature may be a thermal UV-flash (T~5x10⁴ K) with very low luminosity (L~10⁴³ erg/s) and durations of ~1000 s. ⇒ continuous transition between UV-flashes and GRBs??

The fireball stretches radially and, it can produce events with durations of few seconds (*although the central engine may survive only for a few 0.1 s*).

Our results are consitent with the fluence-duration proportionallity (short vs long GRBs; e.g., Balazs et al 2003): $E_{iso} \sim 10^{51}$ erg while $E_{dep} = 10^{49}$ erg (in 0.1 s).

The fireball structure is inhomogeneous both in radial and angular directions (KH-instab.) and has a contractive, ultrarelativistic core + relativistic, expanding layer