# **Polarization and the Magnetic Field Structure in GRB Outflows**

**Jonathan Granot** 

KIPAC @ Stanford

Collaborators: Greg Taylor, Arieh Königl

22<sup>nd</sup> Texas Symposium on Relativistic Astrophysics Stanford University, December 15, 2004

## **Outline of the Talk:**

**GRB** theory: Fireball model vs. Poynting flux GRB polarization: an unresolved relativistic jet Afterglow pol.: variable vs. smooth light curves Polarization in the prompt γ-ray emission Polarization of the optical flash & radio flare New: upper limits on the Pol. of the radio flare Implication for B-field structure + jet structure Conclusions

### **Theory: Fireball vs. Poynting Flux**



### **Polarization of Synchrotron Emission**



■ **linear polarization** perpendicular to the projection of B on the plane of the sky (+ residual elliptical pol.  $\leq 1/\gamma_e \ll 1$ )

The maximal polarization is for the local emission from an ordered **B**-field:  $P_{max} = (\alpha+1)/(\alpha+5/3)$  where  $F_v \propto v^{-\alpha}$ ,  $-1/3 \leq \alpha \leq 1.5 \Rightarrow 50\% \leq P_{max} \leq 80\%$ (Rybicki & Lightman 1979; Granot 2003)

#### Shock Produced Magnetic Field: A magnetic field that is produced at a relativistic collisionless shock, due to the two-stream instability, is expected to be tangled within the plane of the shock (Medvedev & Loeb 1999) Magnetic field Photon emitted $\uparrow P \equiv ()$ normal to plane tangled within $P = P_{max} \frac{\sin^2\theta}{1 + \cos^2\theta}$ a (shock) plane $\mathbf{n}_{\rm ph} = \mathbf{n}_{\rm sh}$ (Liang 1980) $P = P_{max}$ Photon emitted along the plane $\mathbf{n}_{\mathrm{ph}} \perp \mathbf{n}_{\mathrm{sh}}$



### Polarization in the observer frame

Random field in shock plane



### Ordered field in shock plane



Sari 99; Ghisellni & Lazzati 99





# Afterglow Polarization: Observations

- Linear polarization at the level of P ~ 1%-3% was detected in several optical afterglows
- In some cases P varied, but usually  $\theta_{p} \approx \text{const}$
- Different from predictions of uniform or structured jet



- Polarization of prompt γ-ray emission:
   GRB 021206 P = 80% ± 20% (Coburn & Boggs 2003)
   Controversial\*: measuring pol. in %-rays is very difficult
- P ~ P<sub>max</sub> can be achieved in the following ways: (1) ordered magnetic field in the ejecta<sup>†</sup> (2) special geometry:  $\theta_i < \theta_{obs} \leq \theta_i + 1/\Gamma \Rightarrow$  narrow jet:  $\theta_1 \leq 1/\Gamma$  (works with shock produced magnetic field\* \*Rutledoranverse Co a <sup>†</sup>JG & Königl 03, Coburn & Boggs 03, Lyutikov et al. 03, JG 03 Magnetic-field lines Jet direction γ-rays Observer **\***Waxman 03, b Nakar et al. 03

Waxman (2003)

\*\*Lazzati et al. 03,Eichler & Levinson 03

# **Reverse shock Pol.: B-field in ejecta**

- The existence of a reverse shock  $\implies E_{EM} \leq E_{kin} ( \leq 1)$
- **In the 'optical flash'** the **pol.** should be **similar** to that in **%-rays**, but much easier to measure & more reliable
- If  $B_{ord}$  in the ejecta is ordered on angles  $1/\Gamma_0 \leq \theta_B < \theta_i$ then  $P \approx P_{max} \times min(1, \Gamma \theta_{B})$  due to averaging over N ~  $(\Gamma \theta_{\rm R})^{-2}$  incoherent patches (Granot & Königl 03)  $\implies$  smaller **P** & different  $\theta_{p}$  in t

the ejecta:

2004





| B-   | field           | <b>Optical Flash</b>                                                 | <b>Radio Flare</b>                                                                    |
|------|-----------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| S    | hock            | $\theta_{\rm obs} \leq \theta_j - 1/\Gamma$ : $\mathbf{P} \approx 0$ | pol. due to jet structure                                                             |
| Pro  | duced           | $\theta_{\rm obs} \sim \theta_{\rm j} + 1/\Gamma: P \leq 50\%$       | $\Rightarrow$ similar to afterglow                                                    |
| Un   | iform           | $P \sim P_{max}$                                                     | $P \sim P_{max}$                                                                      |
| Patc | $hes(\theta_B)$ | $\theta_{\rm B} \gtrsim 1/\Gamma_0$ : P ~ P <sub>max</sub>           | $P \sim P_{max} \times min(1, \Gamma \theta_B)$                                       |
| То   | roidal          | $\theta_{\rm obs} \gtrsim 1/\Gamma_0$ : P~P <sub>max</sub>           | structured jet: $P \sim P_{max}$<br>tophat: $P \sim P_{max}(\theta_{obs}/\theta_j)^2$ |

## New: Upper Limits on Polarization of Radio Flare Emission (JG & Taylor 04)

| GRB    | t (days)   | <mark>t</mark> j (days) | Π <sub>L</sub> (3 σ) | <mark>Π<sub>C</sub> (3 σ)</mark> |
|--------|------------|-------------------------|----------------------|----------------------------------|
| 990123 | 1.25       | <b>≈ 2</b>              | < 23%                | < 32%                            |
|        | 1.49       |                         | < 11%                | < 17%                            |
| 991216 | 2.68       | ~ 2                     | < 9%                 | < 15%                            |
|        | 1.49, 2.68 |                         | < 7%                 | < 9%                             |
| 020405 | 1.19       | ~ 1-2                   | < 11%                | < 19%                            |

Probably almost no depolarization in the host galaxy

Likely no significant depolarization in the source due to different amounts of Faraday rotation; hard to rule out

# **Implications of the Upper limits on the Radio Flare Polarization**

| <b>B-f</b> | ield                  | Theoretical                                       | Theory vs.                                                          |
|------------|-----------------------|---------------------------------------------------|---------------------------------------------------------------------|
| stru       | cture                 | prediction                                        | Observation                                                         |
| Sh         | ock                   | pol. due to jet structure                         |                                                                     |
| Proc       | luced                 | $\Rightarrow$ similar to afterglow                |                                                                     |
| Uni        | form                  | $P \sim P_{max}$                                  | X                                                                   |
| Patch      | $les(\theta_{\rm B})$ | $P \sim P_{max} \times min(1, \Gamma \theta_B)$   | $\theta_{\rm B} \leq P_{\rm lim} / \Gamma P_{\rm max} \sim 10^{-2}$ |
|            | o dol                 | structured jet: P ~ P <sub>max</sub>              | X                                                                   |
|            |                       | tophat: $P \sim P_{max}(\theta_{obs}/\theta_j)^2$ | $\theta_{\rm obs}/\theta_{\rm j} \lesssim 0.4 - 0.55$               |

### **Toroidal Magnetic Field:**

Dynamics of the Ejecta: Γ(t) follows that of the forward shock

Γ(t) follows theBlandford &McKee selfsimilar solution

Γ(t) follows
that of the
forward shock



### Magnetic field Structure in the Source

- Poynting flux dominated outflow (\* >> 1): naturally produces a structured jet + toroidal magnetic field
- **Reverse shock**  $\Rightarrow \Rightarrow \le 1 \Rightarrow$  maybe due to **dissipation**
- Dissipation can also cause a random field component
- If Poynting flux is sub-dominant ( $\diamond \leq 1$ ):
  - $\diamond$  Axial symmetry  $\Rightarrow$  toroidal magnetic field
- ◆ B-field tangled on small scales ⇒ tangled in 2D
  Shock produced B-fied can give rise to a random field component B<sub>rnd</sub> on top of an initislly ordered one B<sub>ord</sub> ⇒ lowers pol. by a factor ~η/(1+ η); η ≈ ⟨B<sub>ord</sub><sup>2</sup>⟩/⟨B<sub>rnd</sub><sup>2</sup>⟩
  For GRB 991216: η/(1+ η) ≤ 1/6 ⇒ η ≤ 0.2
  For → > 1 one might naturally expect η ≥ 0.5

# **Conclusions:**

- The most promising way to probe the magnetic field structure in GRB outflows is by measuring the optical flash or radio flare polarization
- New upper limits on the radio flare polarization are hard to reconcile with a structured jet + a predominantly toroidal magnetic field
- → for GRB 991216:  $\langle B_{ord}^2 \rangle / \langle B_{rnd}^2 \rangle \leq 0.2$
- A toroidal magnetic field + a uniform jet is possible for viewing angles θ<sub>obs</sub>/θ<sub>j</sub> ≤ 0.4 0.55
   If the magnetic field is ordered on patches of angular scale θ<sub>B</sub> then: θ<sub>B</sub> ≤ P<sub>lim</sub>/ΓP<sub>max</sub> ~ 10<sup>-2</sup>