Thermal Gamma-Ray Bursts Emission Components During the Earliest Epoch

Felix Ryde Stockholm University

Outline

- Introduction
 - Basic observations
 - Spectral evolution

Quasi-thermal bursts

- Pure thermal
- Thermal + non-thermal

• Fireball physics

- Wind model
- Shell model
- Poynting flux model
- Broad-band spectra
 - Alternative Models
 - GLAST prospects
- Conclusions

GRB Spectrum - CGRO Results

The peak of the spectrum lies between ~ keV - MeV.

Time resolved spectral parameters, Preece et al. 2000, ApJS, 126, 19

Cooling time for synchrotron emission and inverse Compton

$$t_{cool} = \frac{E}{E} \frac{(1+z)}{2\dot{E}} = \frac{i mc^2}{4=3\hat{u}_T ci \,^2 U_B (1+\frac{U_r}{U_B})} \not 0 \ 10^{\dot{a} \, 6} \, s$$
 (Ghisellini et al. 2000)

which is much shorter than the typical dynamical time scale

$$t_{dyn} = R = 2\dot{E}^2 c \emptyset \ 1 s \ (\frac{R}{10^{15} cm})$$

and/or the integration time (~1 s).

The electrons are therefore in the fast cooling regime $\alpha = -3/2$.

Spectral Evolution, example 2

GRB 910927: Strong α -evolution

- Spectral Evolution: The time resolved spectra evolves from hard to soft; E_p decreases and α gets softer.
- A few bursts are thermal during an initial phase. Noted by Ghirlanda in 2003 and Preece 2002
- Some bursts are indeed thermal throughout their duration (~1 % of all bursts)

Quasi-thermal Bursts

Pure Thermal Pulses:

Ryde 2004, ApJ, 614, 827

Planck spectrum:

 $N_{E}(E;t) = A(kT)^{2} \frac{x^{2}}{(e^{x} a 1)}$

x ñ E=kT

(CGRO BATSE light curves)

Cooling of the emitting plasma

Late Time Decay: kT / t^v à 0:7

Thermal/non-thermal (initially thermal)

Interpretation:

Photospheric and non-thermal synchrotron emission overlayed. α -evolution is due to varying amplitudes of the components

Revisit GRB 910927: Black body + power law with α = -1.5 (cooling spectrum)

Chi-square

kT of the thermal component

Yet another example: GRB 980306

Varying power law index; α = -1.5 to -2.1

Where are these thermal spectra emitted?

- ? -

Most outflow models predict a strong photospherical emission.

And are these spectra really black bodies?

In general, you would expect a modified black body radiation due to

- Curvature effects: multi-color black body
- Compton scattering atmosphere :

Depending on the degree of Comptonization the spectrum will be modified BB.

Alternative models which give hard α -values:

- •Small-pitch angle synchtroton, jitter radiation: α =0
- •I nverse Compton of single e-: α =0
- •Self-absorbed synchrotron: $\alpha = 3/2$
- •Wien spectrum: α =2

Fireball Physics

Piran 1999 Beloborodov 2003

Axisymmetric flow driven by thermal pressure.

$$S(R) = S_0 \frac{\alpha_R}{r_0} \tilde{N} \qquad \begin{array}{l} \Psi = 2 \text{ radial funnel} \\ \Psi = 1 \text{ parabolic funnel} \end{array}$$

Relativistic ideal fluid $w' = 3P' >> \rho' c^2$ (adiabatic)

Mass conservation:

Energy conservation:

$$Sú^{0}Ec = M_{b}$$

S(w⁰+ P⁰) $E^{2}c = L_{th}$

Combination gives $W = \frac{3}{4} \frac{L_{th}}{S\dot{E}^2 c}$) $\frac{W}{\dot{u}} = \frac{3}{4} \frac{L_{th}}{M_b \dot{E}}$ i.e. independent of collimation!

Equation of state:

w/
$$u^{4=3}$$
) w¹⁼⁴/ \dot{E}^{a1}) T \dot{E} = const

The Lorentz boost balances the adiabatic losses.

This is the temperature that would be observed at infinity if the radiation could escape.

More specifically

$$\dot{E} = \frac{a_R a_{\tilde{N}=2}}{a_{\tilde{R}} a_{\tilde{N}=2}}$$
$$T = \frac{R}{r_0}$$

$$\Gamma T = T_{obs} \sim const$$

 $\Gamma \sim R$ or $R^{1/2}$

$$\frac{\text{What is } T_0?}{\text{W} = \frac{L_{\text{th}}}{\dot{O}_0 r_0^2 c}} = aT_0^4$$
$$kT_0 = 600 \text{ keV}$$

with $L = 10^{51} \text{ erg/s}$ $r_0 = 3 \ 10^6 \text{ cm}$ z = 1

Coasting phase:

$$W = \dot{u}c^2 + 3R => \Gamma = const$$

Conservation laws: $\sim \rho/\Gamma$

Adiabatic expansion coasting phase:

 $kT^{0}/\hat{u}^{0}=3$ Adiabatic relation for electromagnetic radiation $\hat{u}^{0}/R^{\dot{a}\,2}\dot{E}^{\dot{a}\,1}$ Comoving density of a thin shell expanding relativistically Mass conservation => ρ -S⁻¹-R^{- Ψ} Temperature in the observer frame $kT/kT^{0}\dot{E}/t^{\dot{a}\,2=3}$; $\dot{E} = const$

I. Short duration Wind

(dynamical time ~light crossing time)

thermal emission could be rather bright in the γ -rays.

 R_{ph} is approximately the same for all shells unless Γ and/or E varies. Daigne & Mochkovitch (2002) assume a constant E and a Γ that varies with injection time:

Does not provide a satisfactory explanation

II. Thin shell

Typically the thin shell becomes optically thin at a certain radius and a flash of thermal emission is emitted at a single temperature $kT / R^{a 2=3}$.

Radiation emitted below R_{ph} is thermal and would probe the temperature dependency with radius. Thermal emission and $\gamma = 4/3$

But very weak => efficiency problem.

•Another problem with the kinetic, thin-shell model are the time-scales:

$$R_{sat} = 2c\dot{E}^{2} = 10^{\dot{a} \, 5} s \left(\frac{R}{10^{7} cm}\right) \left(\frac{E}{10^{52} erg}\right) \left(\frac{M}{5 \acute{a} 10^{\dot{a} \, 6} M_{1}}\right)$$

 $R_{\rm sat}$ ~ 10⁹ cm

Need underloaded fireballs ø $10^{a} {}^9M_1$ and large *R*:

 $R_{\rm sat}$ ~ 10¹⁵ cm

II: Thin shell, cnt'd

- Radiation dominated outflow: $R_{ph} = R_{sat}$. But $\gamma \rightarrow 5/3$, thermal?
- Pair fireballs (e⁺ e⁻ γ winds): È / R and ÈT = const beyond R_{ph} until üø 10^{à 5}. Quasi black body emission (Grimsrud & Wasserman 1998) Saturation not at R_{ph} but when scattering time ~ expansion time.

Broad band spectral coverage

To find out more, we need a broader spectral coverage.

Composite spectrum of GRB 930131; BATSE, COMPTEL, and EGRET instruments

COMPTEL: 0.75 - 30 MeV

EGRET: 30MeV-30GeV

GLAST Sensitivity

Gamma Ray Burst Monitor (GBM): Large Area Telescope (LAT):

Continuum Sensitivity * E2

10 keV - 25 MeV 20 MeV - 300 GeV

- For GRBs -> ~5 times better
- Good localization 30"- 5" (FOV 2-3 sr)
- Good energy resolution ~10%
- 50 150 bursts/year
- Several spectral components?
- •Self-compton component? (E > $i_e^2 Ep$)
- •IC ambient rad. field?
- IC photospheric radiation?
- Ultra relativistic hadrons induce EM cascades through photomeson and photo-pair production

- Settling the issue of emission mechanisms during the prompt phase is an urgent task. Models depend on this result.
- Several spectral components are present in the high-energy band: Thermal photospheric emission and non-thermal synchrotron emission from either internal shocks or magnetic reconnections. The relative strengths vary from burst to burst and depend on the initial conditions of the outflow.
- *A radiation dominated fireball or a Poynting flux* dominated fireball is needed to explain the behavior of the thermal pulses, with a near constant initial temperature and a later decay t^{-0.7}.
- *GLAST* will with its increased sensitivity and extended energy range open up an important energy window for GRBs and be able to disentangle the high energy emission components

FIN