Particle Acceleration

in

relativistic flows

John Kirk

Max-Planck-Institut für Kernphysik

Heidelberg

Germany

Acceleration sites

Astrophysical flows *ideal* (Reynolds number $\gg 1$)

Astrophysical flows *ideal* (Reynolds number $\gg 1$)

Dissipation of kinetic energy by shocks, shear, boundary layers e.g.,

- pulsar wind termination shock
- jet recollimation/termination shocks
- jet/jet spine interface
- differentially rotating jet

Astrophysical flows *ideal* (Reynolds number $\gg 1$)

Dissipation of kinetic energy by shocks, shear, boundary layers e.g.,

- pulsar wind termination shock
- jet recollimation/termination shocks
- jet/jet spine interface
- differentially rotating jet

Dissipation of magnetic energy at current sheets e.g.,

- striped pulsar wind
- magnetic shear layer in jet

 Shocks (Fermi I): idealised picture f ∝ p^{-s}, s ≈ 4.2 (photon index q = 1.6, after cooling q = 2.1)

- Shocks (Fermi I): idealised picture f ∝ p^{-s}, s ≈ 4.2 (photon index q = 1.6, after cooling q = 2.1)
- *s* not universal, but robust to variations in assumed turbulence properties

- Shocks (Fermi I): idealised picture f ∝ p^{-s}, s ≈ 4.2 (photon index q = 1.6, after cooling q = 2.1)
- s not universal, but robust to variations in assumed turbulence properties
- supressed by strong field Niemiec & Ostrowski 2004

- Shocks (Fermi I): idealised picture f ∝ p^{-s}, s ≈ 4.2 (photon index q = 1.6, after cooling q = 2.1)
- s not universal, but robust to variations in assumed turbulence properties
- supressed by strong field Niemiec & Ostrowski 2004
- P.I.C. simulations: Fermi I not (yet) seen in e p plasma (Hededal et al 2004) electron acceleration may be easier in e^{\pm} plasma (Nishikawa et al 2004)

- Shocks (Fermi I): idealised picture f ∝ p^{-s}, s ≈ 4.2 (photon index q = 1.6, after cooling q = 2.1)
- s not universal, but robust to variations in assumed turbulence properties
- supressed by strong field Niemiec & Ostrowski 2004
- P.I.C. simulations: Fermi I not (yet) seen in e p plasma (Hededal et al 2004) electron acceleration may be easier in e^{\pm} plasma (Nishikawa et al 2004)
- Shear, boundary layer: idealised picture $f \propto p^{-3+\alpha}$ depending on scattering rate. Relatively slow, more effective for protons Stawarz & Ostrowski 2002; Rieger & Duffy 2004

XMM-Newton
Willingale et al 2001 $N(\gamma) \propto \gamma^{2-s}$ Centre: $s \approx 4.2$ Edge: $s \approx 4.2 + 1$

< > – p.4/15

Chandra *Mori et al 2004*

Homogeneous SSC model

> – p.7/15

<

Homogeneous SSC model

Krawczynski et al (2000)

< > - p.7/15

Homogeneous SSC model

Pian et al (1999)

 $\mathrm{d}N_{\gamma}/\mathrm{d}\nu \propto \nu^{-q}$

 $\mathrm{d}N_{\gamma}/\mathrm{d}\nu \propto \nu^{-q}$

reconnection

Zenitani & *Hoshino* (2001): Relativistic PIC simulations, $\sigma \approx 1$

reconnection

Zenitani & *Hoshino* (2001): Relativistic PIC simulations, $\sigma \approx 1$

Acceleratión Region with E > B

< > – p.10/15

reconnection

Zenitani & *Hoshino* (2001): Relativistic PIC simulations, $\sigma \approx 1$

Acceleratión Region with E > BParticle ejection by gyration in B_z -field (Speiser 1965)

reconnection

Zenitani & *Hoshino* (2001): Relativistic PIC simulations, $\sigma \approx 1$

Acceleratión Region with E > BParticle ejection by gyration in B_z -field (Speiser 1965) Escape rate $eB_z/\gamma mc \Rightarrow d \ln N/d \ln \gamma = -2B_z/E \approx -1$

reconnection

Zenitani & *Hoshino* (2001): Relativistic PIC simulations, $\sigma \approx 1$

Acceleration Region with E > BParticle ejection by gyration in B_z -field (Speiser 1965) Escape rate $eB_z/\gamma mc \Rightarrow d \ln N/d \ln \gamma = -2B_z/E \approx -1$ q = 1 (uncooled)

Nonrelativistic inflow for $\sigma \ll R$.

Additional regimes with relativistic inflow possible... < > -p.11/15

Jaroschek et al (2004)

• pair plasma

< > – p.12/15

Jaroschek et al (2004)

- pair plasma
- 2.5 dimensions

> – p.12/15

- pair plasma
- 2.5 dimensions
- 10⁸ particles

- pair plasma
- 2.5 dimensions
- 10⁸ particles
- $\sigma \approx 10^3$

- pair plasma
- 2.5 dimensions
- 10⁸ particles
- $\sigma \approx 10^3$
- Multiple X-points

- pair plasma
- 2.5 dimensions
- 10⁸ particles
- $\sigma \approx 10^3$
- Multiple X-points
- |E/B| > 1 in extended zone

J.K., Phys. Rev. Letts. (2004)

< > – p.13/15

J.K., Phys. Rev. Letts. (2004)

Stationarity ⇒ superluminal "drift" speed

J.K., Phys. Rev. Letts. (2004)

- Stationarity ⇒ superluminal "drift" speed
- B_z cannot eject particles

J.K., Phys. Rev. Letts. (2004)

- B_z cannot eject particles \Rightarrow finite length in y direction

Relativistic current sheets

J.K., Phys. Rev. Letts. (2004)

Maximum energy $\gamma \approx 2\sigma$ (pair plasma) $\gamma \approx \sigma M/m$ (e – p)

- Stationarity \Rightarrow superluminal "drift" speed
- B_z cannot eject particles \Rightarrow finite length in y direction

Jaroschek et al (2004)

 sheet contains supersonic plasma

< > – p.14/15

- sheet contains supersonic plasma
- locally $\sigma < 1$

- sheet contains supersonic plasma
- locally $\sigma < 1$
- shocks important

- sheet contains supersonic plasma
- locally $\sigma < 1$
- shocks important
- equipartition automatic

- sheet contains supersonic plasma
- locally $\sigma < 1$
- shocks important
- equipartition automatic

Summary

Kinetic energy:

• Idealised models fairly well understood

- Idealised models fairly well understood
- P.I.C. simulations of Fermi I not (yet?) achieved

- Idealised models fairly well understood
- P.I.C. simulations of Fermi I not (yet?) achieved
- Observational evidence for two-stage acceleration

- Idealised models fairly well understood
- P.I.C. simulations of Fermi I not (yet?) achieved
- Observational evidence for two-stage acceleration

Magnetic energy:

- Idealised models fairly well understood
- P.I.C. simulations of Fermi I not (yet?) achieved
- Observational evidence for two-stage acceleration

Magnetic energy:

- Relativistic generalisation of Sweet-Parker \rightarrow hard spectra

- Idealised models fairly well understood
- P.I.C. simulations of Fermi I not (yet?) achieved
- Observational evidence for two-stage acceleration

Magnetic energy:

- Relativistic generalisation of Sweet-Parker \rightarrow hard spectra
- Generic topology different, but estimates of maximum energy ($\sim \sigma mc^2$) possible

- Idealised models fairly well understood
- P.I.C. simulations of Fermi I not (yet?) achieved
- Observational evidence for two-stage acceleration

Magnetic energy:

- Relativistic generalisation of Sweet-Parker \rightarrow hard spectra
- Generic topology different, but estimates of maximum energy ($\sim \sigma mc^2$) possible
- Hybrid mechanism?