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Summary

* Introduction to AXPs
* Evidence that AXPs are magnetars

e Open Issues and Recent Results:
— IR emission
— Transient AXPs and Magnetar birthrate
— Connection with radio pulsars

Goal:
Understand Physics of Neutron Stars



(Anomalous) X-ray Pulsars

5(8) known

All but 1 in Galactic Plane (|b| < 1 deg), exception In
SMC; some In SNRs—> young sources

periods from 6-12 s, all spinning down

X-ray luminosities 1033 — 10736 erg/s

Soft X-ray spectra: thermal and non-thermal components

— KT ~0.3-0.4 keV, Gamma ~ 2-4
— But recently hard X-ray emission detected (Kuiper et al. 2004)

“anomalous” as energy source unclear: X-ray
luminosity much too high to be rotation-powered




Evidence for AXP being
Magnetars

o AXP X-ray luminosity requires energy source
o B-field implied by P, dP/dt is magnetar-strength



P-Pdot Diagram

Z7 R
o 14
T~ ~._10"* @G
—10 | e
\ M“m_\ n
o "
i b 4
)
A
So12 |
-
E®
b}
e
o]
o]
=
Qo
£,
0_14: B
a0
=
16 |- e
10% y .
| 1 | J...: | L
0.01 0.1 1 10

SGRs,

/ AXPs

B=32x10"y/PPG

. maln

radio pulsar
population

Period (seconds)

McLaughlin et al. 2003



Evidence for AXP being
Magnetars

o AXP X-ray luminosity requires energy source
o B-field implied by P, dP/dt is magnetar-strength



Evidence for AXP being
Magnetars

o AXP X-ray luminosity requires energy source
o B-field implied by P, dP/dt is magnetar-strength
o Similar X-ray spectra to SGRs



Evidence for AXP being
Magnetars

AXP X-ray luminosity requires energy source
B-field implied by P, dP/dt is magnetar-strength
Similar X-ray spectra to SGRs

Can exhibit X-ray bursts
— Seen In 2 sources

— Quantitatively similar to SGR bursts (Gavriil et al.
2004)



AXP Bursts OXTE/PCA
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June 2004 Burst from 1E 1048-5937
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Major Outburst from 1E 2259+586

1E 22594588 06,/18/02 15:39 UT Start 125 ms binning

e onJune 18, 2002, during g [T
RXTE observations, major

bursting detected from
1E 2259+586

e 80 bursts detected In
15 ks observations; wide
range of burst peak fluxes,
fluences, rise times,
durations, morphologies.
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1E 2259+586 Outburst:
Persistent Emission

* pulsed, persistent flux
Increased by factor of
>20 during outburst;
decreased during
observation, In
concert with burst rate
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Longer Term 1E 2259+586 Pulsed Flux History
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AXPs Accretion-Powered?

» Accretion from a supernova fall-back disk? (\VVan Paradijs
et al. 1995; Chatterjee et al 1999; Alpar 1999)

— no mechanism or energy for bursts
— AXPs generally rotationally very stable




AXPs Generally Rotationally Stable
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AXPs Accretion-Powered?

» Accretion from a supernova fall-back disk? (\VVan Paradijs
et al. 1995; Chatterjee et al 1999; Alpar 1999)

— no mechanism or energy for bursts
— AXPs generally rotationally very stable
— 1 AXP shows no torque/luminosity correlation




1E 1048-5937 Monitored with RXTE:
an Anomalous AXP
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Poor rotational stability

ie—— X-ray “flares”:

several week rises

«mi«—— N0 large spectral

changes



Torque/Flux Correlation in 1E 1048-59377?

* no signifi

cant torque-

flux correlation

 hard to explain In
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AXPs Accretion-Powered?

» Accretion from a supernova fall-back disk? (\VVan Paradijs
et al. 1995; Chatterjee et al 1999; Alpar 1999)

— no mechanism or energy for bursts
— AXPs generally rotationally very stable
— 1 AXP shows no torque/luminosity correlation

— faint optical/IR counterparts imply disk is small,
ring-like (Hulleman et al. 1999, 2000)




AXPs Accretion-Powered?

» Accretion from a supernova fall-back disk? (\VVan Paradijs
et al. 1995; Chatterjee et al 1999; Alpar 1999)

— no mechanism or energy for bursts
— AXPs generally rotationally very stable

-1 AXP
— faint o

ring-Ii
- 27% 0

shows no torque/luminosity correlation

ptical/IR counterparts imply disk is small,
Ke (Hulleman et al. 1999, 2000)

ptical pulsed fraction too high for

reprocessing (Kern & Martin 2002)

Very Probably N O :



Issues: IR “EXxcess”

Most AXPs IR-detected; K~19-23 mag
Energetically tiny compared to X-rays

IR emission much brighter than expected from
extrapolation of thermal spectrum

Fainter than extrapolation of power law

IR variability common; time scale unknown

— In 1E 1048-5937, 4U 0142+61 IR and X-ray variability
uncorrelated (Israel et al. 2002; Hulleman et al. 2004)

Origin?
— Magnetar + disk ? (Israel et al. 2003; Eksi & Alpar 2003)

— Magnetospheric synchrotron emission as in radio pulsars?
(Eichler et al. 2002; Ozel 2004)
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1E 2259+586 Outburst: IR Brightening
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Ks-band near-IR flux
monitored with 0
Gemini NIRI

power-law decay

exponent

-0.21 +/- 0.02
X-ray flux decay

exponent

-0.21+/-0.01
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Issues: Transient AXPs

2 AXPs discovered In “outburst”; AX J1845-0258,
XTE J1810-197

Quiescent luminosities > 10-100x lower than in
outburst

No accompanying bursts detected (but easily
could have been missed)

Possibly correlated X-ray/IR decay (Rea et al.
2004)

How many more out there??




Transient AXP

e |brahim et al. 2004 XTE J1810-197
discovered new 5.54 s - T
X-ray pulsar with : UL e
RXTE In Jan 2003. oF [ EEE o~

 pulsar spinning down
regularly but noisily

e magnetar strength
field inferred

+ Quiescent spectrum HM ..... 1 ...... | |
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Issues: Connection to Radio
Pulsars

Some radio pulsars have B in magnetar range
P, dP/dt, glitches seem to connect populations

There should be transition objects
— No AXP has shown radio emission: could be beaming
— Can a radio pulsar show AXP-like emission?

PSR J1718-3718: B (7el3 G) higher than one AXP

— Chandra observations:

o X-ray faint: flux ~ 6x107-15 erg/s/cm2 (VK & McLaughlin 2004)
though comparable to dE/dt

» Soft spectrum (kT=0.145 keV)
— could be initial cooling or quiescent magnetar???



PSR J1119-6127: A Young,
High-B Radio Pulsar
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summary

* AXPs united with SGRs via P, dP/dt, spectra, X-ray

luminosities, bursting, as predicted by magnetar model
e Major Open Issues:

— What (if anything) differentiates AXPs from SGRs? Age? B?
— What fraction of NSs are magnetars? Magnetar birthrate?

— What (if anything) differentiates AXPs from high-B radio
pulsars?

— Is conventional P, dP/dt estimator for B reliable?
o Other Open issues:
— What is origin of IR emission?
— What is origin of X-ray and IR variability?
— What is origin of torque noise in AXPs (and radio pulsars!) ?




How Many Magnetars in Milky Way?

past studies of SGR bursts suggested 10 active magnetars
(Kouveliotou et al. 1993)

AXPs double this
AXP transients suggest many more...

Cappellaro et al 1997: Galactic core-collapse SNe every
50-125 yr

Lyne et al. 1998: radio pulsar born every 60-330 yr

If magnetar, radio pulsar birth rates comparable, and
If magnetars “live” 10 kyr, could be >150 in Galaxy

need sensitive all-sky X-ray monitor to look for outbursts
SWIFT may help...
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