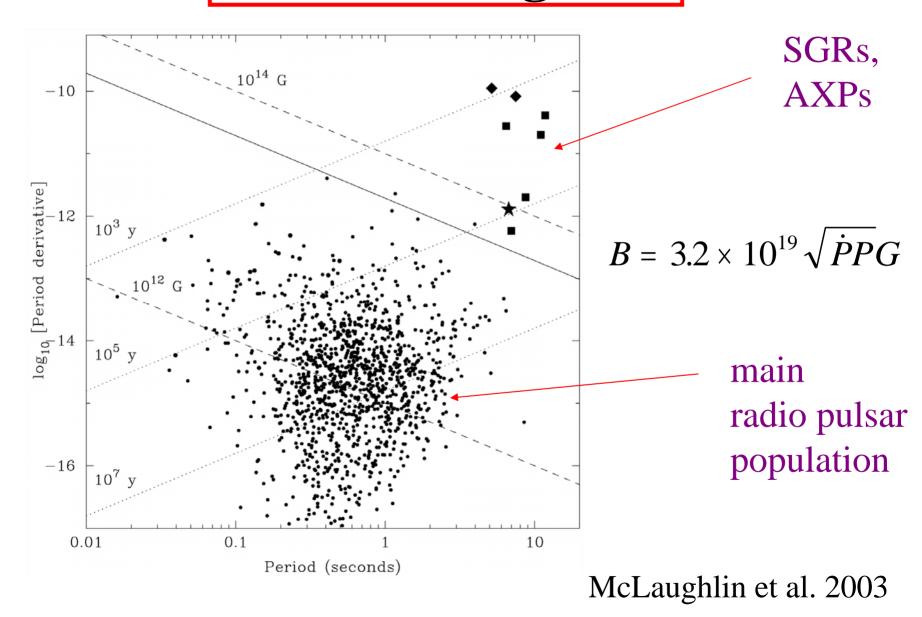
(Anomalous) X-Ray Pulsars

Texas @ Stanford December 16, 2004

Summary

- Introduction to AXPs
- Evidence that AXPs are magnetars
- Open Issues and Recent Results:
 - IR emission
 - Transient AXPs and Magnetar birthrate
 - Connection with radio pulsars

Goal:


Understand Physics of Neutron Stars

(Anomalous) X-ray Pulsars

- 5(8) known
- All but 1 in Galactic Plane (|b| < 1 deg), exception in SMC; some in SNRs → young sources
- periods from 6-12 s, all **spinning down**
- X-ray luminosities $10^3 10^3 6 \text{ erg/s}$
- Soft X-ray spectra: thermal and non-thermal components
 - $kT \sim 0.3-0.4 \text{ keV}$, Gamma $\sim 2-4$
 - But recently hard X-ray emission detected (Kuiper et al. 2004)
- "anomalous" as energy source unclear: X-ray luminosity much too high to be rotation-powered

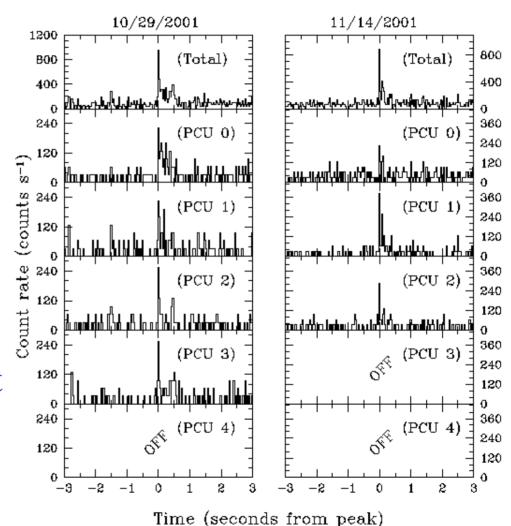
- AXP X-ray luminosity requires energy source
- B-field implied by P, dP/dt is magnetar-strength

P-Pdot Diagram

- AXP X-ray luminosity requires energy source
- B-field implied by P, dP/dt is magnetar-strength

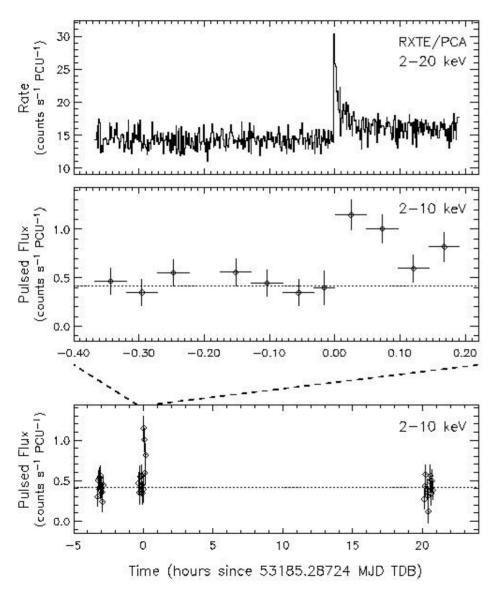
- AXP X-ray luminosity requires energy source
- B-field implied by P, dP/dt is magnetar-strength
- Similar X-ray spectra to SGRs

- AXP X-ray luminosity requires energy source
- B-field implied by P, dP/dt is magnetar-strength
- Similar X-ray spectra to SGRs
- Can exhibit X-ray bursts
 - Seen in 2 sources
 - Quantitatively similar to SGR bursts (Gavriil et al. 2004)


AXP Bursts

RXTE/PCA

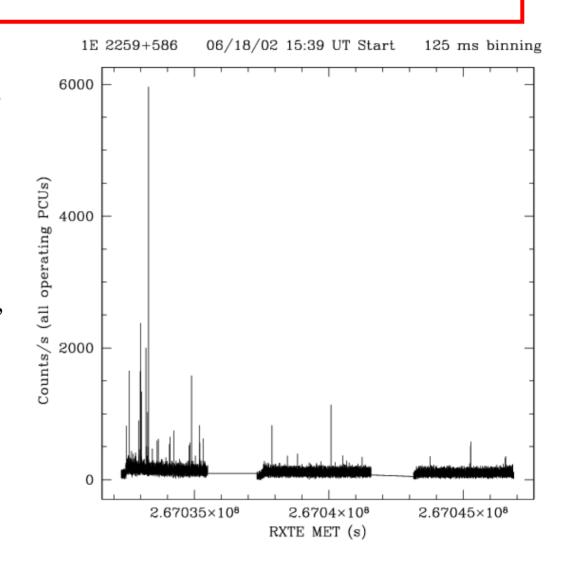
1E 1048-5937


2 bursts detected in ~500 ks, over ~5 yr

PCA FOV 1 deg: Can't prove bursts from AXP...But burst properties unlike any other known phenomenon...

Gavriil, VK & Woods 2002

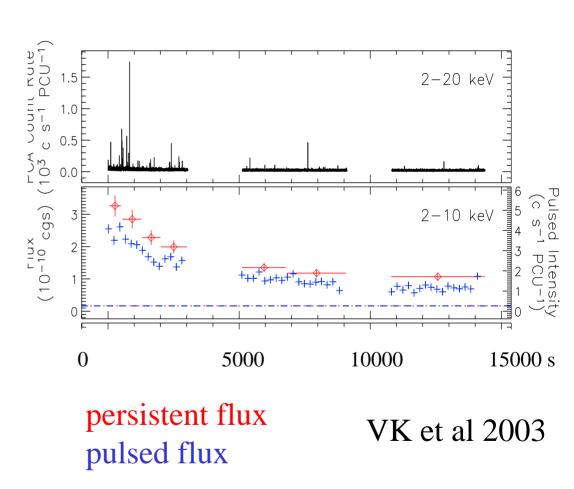
June 2004 Burst from 1E 1048-5937

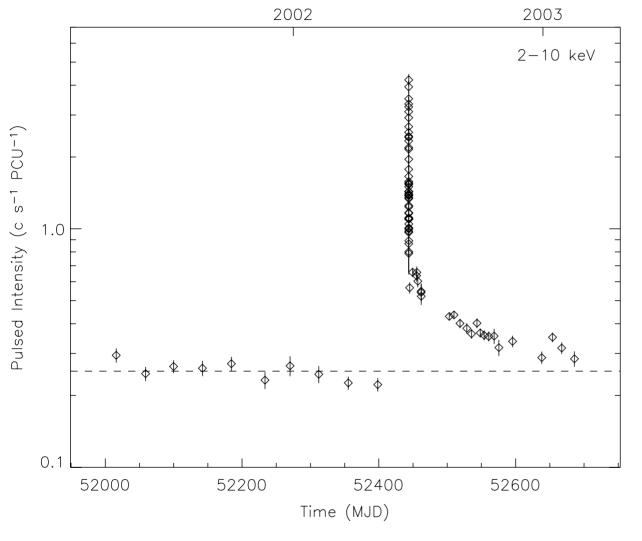


Simultaneous pulsed flux enhancement proves AXP is the burster.

Gavriil, VK & Woods, in preparation

Major Outburst from 1E 2259+586

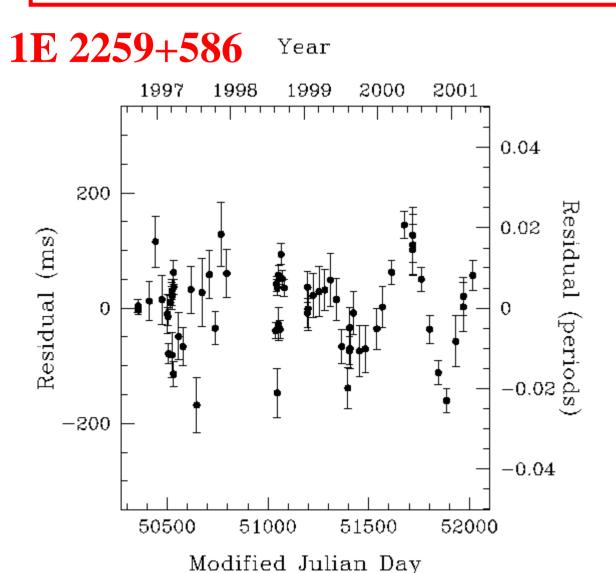

- on June 18, 2002, during *RXTE* observations, major bursting detected from 1E 2259+586
- 80 bursts detected in 15 ks observations; wide range of burst peak fluxes, fluences, rise times, durations, morphologies.


VK et al. 2003.

1E 2259+586 Outburst: Persistent Emission

pulsed, persistent flux increased by factor of >20 during outburst; decreased during observation, in concert with burst rate

Longer Term 1E 2259+586 Pulsed Flux History



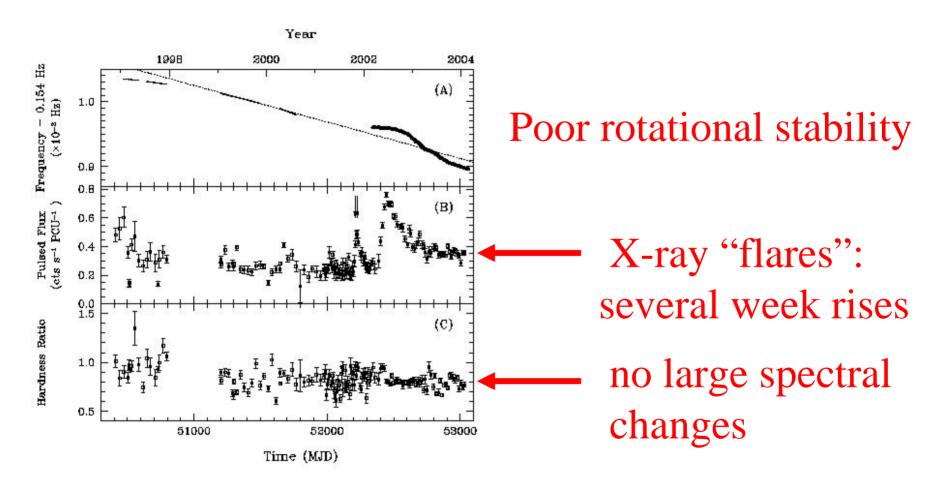
~20x increase in pulsed flux at time of outburst; simultaneous glitch, pulse profile changes, spectral changes

Woods et al. 2004

- Accretion from a supernova fall-back disk? (Van Paradijs et al. 1995; Chatterjee et al 1999; Alpar 1999)
 - no mechanism or energy for bursts
 - AXPs generally rotationally very stable

AXPs Generally Rotationally Stable

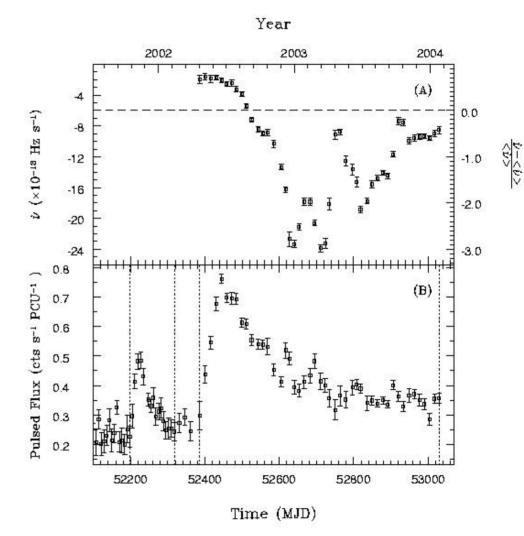
Also 4U 0142+61, RXS J1708-4009, 1E 1841-045


Renders accretion models unlikely; makes glitch detection easy.

Gavriil & VK 2002

- Accretion from a supernova fall-back disk? (Van Paradijs et al. 1995; Chatterjee et al 1999; Alpar 1999)
 - no mechanism or energy for bursts
 - AXPs generally rotationally very stable

- Accretion from a supernova **fall-back disk**? (Van Paradijs et al. 1995; Chatterjee et al 1999; Alpar 1999)
 - no mechanism or energy for bursts
 - AXPs generally rotationally very stable
 - 1 AXP shows no torque/luminosity correlation


1E 1048-5937 Monitored with RXTE: an Anomalous AXP

Gavriil & VK 2004.

Torque/Flux Correlation in 1E 1048-5937?

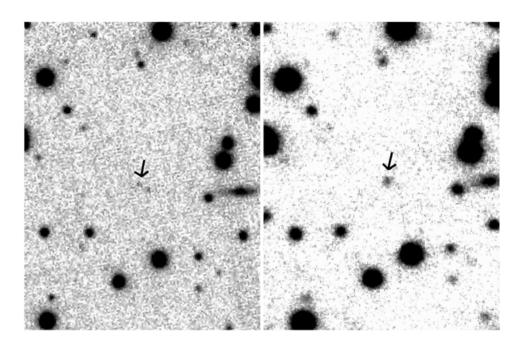
- no significant torqueflux correlation
- hard to explain in fossil disk model
- can possibly be explained in magnetar model (Thompson, Lyutikov & Kulkarni 2002)

Gavriil & VK 2004

- Accretion from a supernova **fall-back disk**? (Van Paradijs et al. 1995; Chatterjee et al 1999; Alpar 1999)
 - no mechanism or energy for bursts
 - AXPs generally rotationally very stable
 - 1 AXP shows no torque/luminosity correlation

- Accretion from a supernova **fall-back disk**? (Van Paradijs et al. 1995; Chatterjee et al 1999; Alpar 1999)
 - no mechanism or energy for bursts
 - AXPs generally rotationally very stable
 - 1 AXP shows no torque/luminosity correlation
 - faint optical/IR counterparts imply disk is small,
 ring-like (Hulleman et al. 1999, 2000)

- Accretion from a supernova fall-back disk? (Van Paradijs et al. 1995; Chatterjee et al 1999; Alpar 1999)
 - no mechanism or energy for bursts
 - AXPs generally rotationally very stable
 - 1 AXP shows no torque/luminosity correlation
 - faint optical/IR counterparts imply disk is small, ring-like (Hulleman et al. 1999, 2000)
 - 27% optical pulsed fraction too high for reprocessing (Kern & Martin 2002)

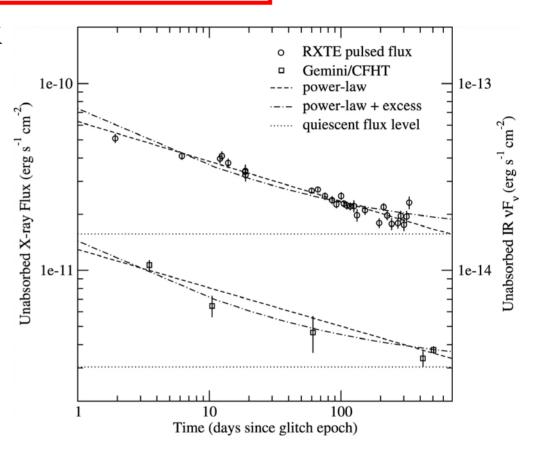


Issues: IR "Excess"

- Most AXPs IR-detected; K~19-23 mag
- Energetically tiny compared to X-rays
- IR emission much brighter than expected from extrapolation of thermal spectrum
- Fainter than extrapolation of power law
- IR variability common; time scale unknown
 - In 1E 1048-5937, 4U 0142+61 IR and X-ray variability uncorrelated (Israel et al. 2002; Hulleman et al. 2004)
- Origin?
 - Magnetar + disk? (Israel et al. 2003; Eksi & Alpar 2003)
 - Magnetospheric synchrotron emission as in radio pulsars?
 (Eichler et al. 2002; Ozel 2004)

1E 2259+586 Outburst: IR Brightening

 detected a brightening of IR counterpart by factor of 3.4, two days after 2002 burst, using NIRI and Gemini-North



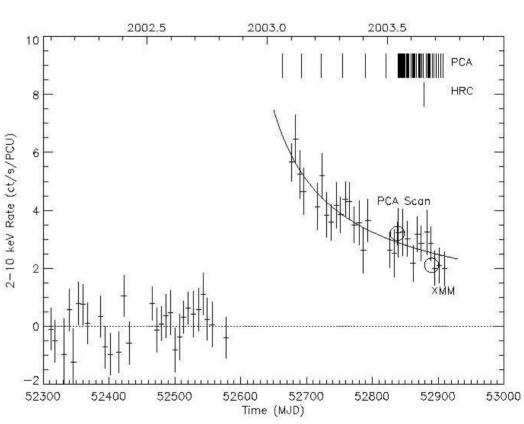
Keck, 2000 Ks = 21.6 mag courtesy F. Hulleman

Gemini, 2002Ks = 20.4 mag

IR Flux Decay

- Ks-band near-IR flux monitored with Gemini NIRI
- power-law decay
- exponent-0.21 +/- 0.02
- X-ray flux decay exponent
 -0.21+/-0.01
- implies IR, X-rays correlated during outbursts

Tam, VK, van Kerkwijk, Durant (2004)


Issues: Transient AXPs

- 2 AXPs discovered in "outburst": AX J1845-0258, XTE J1810-197
- Quiescent luminosities > 10-100x lower than in outburst
- No accompanying bursts detected (but easily could have been missed)
- Possibly correlated X-ray/IR decay (Rea et al. 2004)
- How many more out there??

Transient AXP

- Ibrahim et al. 2004 discovered new 5.54 s X-ray pulsar with RXTE in Jan 2003.
- pulsar spinning down regularly but noisily
- magnetar strength field inferred
- Quiescent spectrum thermal, kT~0.18 keV (Gotthelf et al. 2004)

XTE J1810-197

Ibrahim et al. 2004

How many more out there??

Issues: Connection to Radio Pulsars

- Some radio pulsars have B in magnetar range
- P, dP/dt, glitches seem to connect populations
- There should be transition objects
 - No AXP has shown radio emission: could be beaming
 - Can a radio pulsar show AXP-like emission?
- PSR J1718-3718: B (7e13 G) higher than one AXP
 - Chandra observations:
 - X-ray faint: flux $\sim 6x10^{-15}$ erg/s/cm² (VK & McLaughlin 2004) though comparable to dE/dt
 - Soft spectrum (kT=0.145 keV)
 - could be initial cooling or quiescent magnetar???

PSR J1119-6127: A Young, High-B Radio Pulsar

- B = 4.1e13 G, age = 1.7 kyr
- XMM observation:
 - $Lx \sim 0.0007 dE/dt$
 - Thermal spectrum
 - T = 2.3e6 K (bbody)
 - BUT: very high pulsed fraction: ~76%
 - Narrow pulse profile
- Not explained by any conventional model for rotation-powered pulsars→ transition object??

Gonzalez et al., submitted

Summary

- AXPs united with SGRs via P, dP/dt, spectra, X-ray luminosities, bursting, as predicted by **magnetar** model
- Major Open issues:
 - What (if anything) differentiates AXPs from SGRs? Age? B?
 - What fraction of NSs are magnetars? Magnetar birthrate?
 - What (if anything) differentiates AXPs from high-B radio pulsars?
 - Is conventional P, dP/dt estimator for B reliable?
- Other Open issues:
 - What is origin of IR emission?
 - What is origin of X-ray and IR variability?
 - What is origin of torque noise in AXPs (and radio pulsars!)?

How Many Magnetars in Milky Way?

- past studies of SGR bursts suggested 10 active magnetars (Kouveliotou et al. 1993)
- AXPs double this
- AXP transients suggest many more...
- Cappellaro et al 1997: Galactic core-collapse SNe every 50-125 yr
- Lyne et al. 1998: radio pulsar born every 60-330 yr
- if magnetar, radio pulsar birth rates comparable, and if magnetars "live" 10 kyr, could be >150 in Galaxy
- need sensitive all-sky X-ray monitor to look for outbursts
- *SWIFT* may help...