Chandra Observations of Relativistic AGN Jets

Dan Schwartz Smithsonian Astrophysical Observatory

TEXAS AT STANFORD 2004 December 15

Observations of Extragalactic X-ray Jets

BC: 3 Clear Detections

Cen A: Feigelson et al

M87: Biretta et al.

Chandra Launched: Jets start rolling in.

CE: 3 Fields of Investigation

• Interactions with gas in Seyferts, radio galaxies, clusters.

- FR I and BL Lac jets.
- Quasars, Powerful Radio Sources, and Cosmology.

Observations of Extragalactic X-ray Jets

BC: 3 Clear Detections

Chandra Launched: Jets start rolling in.

Angular Resolution!

INTRODUCTION

- What Do Jets Do?
 - Carry large quantities of energy, to feed radio lobes
 - Significant part of black hole energy generation budget
 - Interact with gas in galaxies and clusters of galaxies

INTRODUCTION

- What Do Jets Do?
 - Carry large quantities of energy, to feed radio lobes
 - Significant part of black hole energy generation budget
 - Interact with gas in galaxies and clusters of galaxies
- What Do We Want to Learn
 - Particle composition and acceleration
 - Jet acceleration and collimation

INTRODUCTION

- What Do Jets Do?
 - Carry large quantities of energy, to feed radio lobes
 - Significant part of black hole energy generation budget
 - Interact with gas in galaxies and clusters of galaxies
- What Do We Want to Learn
 - Particle composition and acceleration
 - Jet acceleration and collimation
- Why Do We Need X-Ray Data?
 - Spectral Energy Distribution (SED) gives mechanism
 - Particle lifetimes change with observed band

Spectral Energy Distribution often indicates against Synchrotron X-rays

Spectral Energy Distribution often indicates against Synchrotron X-rays

Sambruna et al., 2002ApJ...571..206S

Spectral Energy Distribution often indicates against Synchrotron X-rays

Inverse Compton X-rays from the CMB:

$$\gamma_x \approx 10^{2-3}$$

$$\gamma_r \approx 10^{4-5}$$

Some jets may be detectable by GLAST, at 10^{-13} to 10^{-12} ergs cm⁻² s⁻¹

Sambruna et al., 2002ApJ...571..206S

PKS 0637-752 Jet Spectrum

Confront IC/CMB with Morphology

Confront IC/CMB with Morphology

Confront IC/CMB with Morphology

Siemiginowska et al. 2002 ApJ...570..543S PKS 1127-145 at z=1.187

Naive Models

PKS 1421-490 Images Gelbord et al.

ATCA 20 GHz

Magellan i'

Chandra **0.5** – **7** keV

PKS 1421-490 Spectra

Gelbord et al.

Core Model

Radio-Optical: Synchrotron

Equipartition

B=13mG, Γ =20, θ =2.9°

 $20 \le \gamma \le 10^4$

 $\gamma_{break} = 10^3$

X-ray: SSC

Jet Model

Radio-Optical: Synchrotron

Equipartition

B=85mG

 $10^4 \le \gamma \le 2 \times 10^6$

X-ray: Upstream Comptonization?

- Determined B and δ within a factor of 2
- Kinetic flux is $\propto (B\delta)^2$, for equipartition

•
$$K = \Gamma^2 \pi r^2 \beta c U$$

- U is total internal energy density, $U_B+U_e+U_p$
- For equipartition, $U = \frac{B^2}{8\pi}(2 + k)$
- NOTE: K constant \Rightarrow (B Γ)² = constant

• $\mathbf{K} = \Gamma^2 \pi \, \mathbf{r}^2 \boldsymbol{\beta} \, \mathbf{c} \, \mathbf{U}$

• U is total internal energy

density,
$$U_B+U_e+U_p$$

• For equipartition,

$$^{5.74^{\circ}}$$
 U= $\frac{B^2}{8\pi}(2 + k)$

• NOTE: K constant ⇒

$$-11.5^{\circ}$$
 (B Γ)² = constant

• We take $\Gamma \approx \delta$

$$\delta = (\Gamma(1 - \beta \cos(\theta)))^{-1}$$

•
$$\cos(\theta_{\text{max}}) = \frac{\delta - 1/\delta}{\sqrt{(\delta^2 - 1)}}$$

Kinetic flux is a significant, even dominant, portion of the accretion energy budget.

 $K = \Gamma^2 \pi r^2 \beta c U$

Implications of the AGN Jets

- Eddington Luminosity might not limit Accretion Rate
- Jets may Power Cluster Cavities Stop Cooling Flows
- IC/CMB X-ray jets Maintain Constant Surface Brightness vs. z. We will detect them at Arbitrarily Large Redshift.

Where ARE the bright X-ray Jets at High Redshift?

- Unidentified ROSAT sources?
- Bright ROSAT, ASCA, EINSTEIN quasar identifications?
- Extreme X-ray/Optical sources (Koekemoer et al. 2004ApJ...600L.123K) in Chandra Deep Surveys?

Where ARE the bright X-ray Jets at High Redshift?

Cheung,2004ApJ...600L..23C

Two more High Redshift X-ray Jets: Cheung et al. Poster 1613

Quasar 1745+624 = 4C +62.29 at z=3.889

PMN J2219-2719 at z=3.634

There Could Be Radio Quiet X-Ray Jets!

- 1 keV X-rays produced by $\gamma \approx 1000/\Gamma$
- $v = 4.2 \times 10^{-6} \gamma^2 \text{ H}[\mu\text{G}]$ $\approx 10 \text{ MHz}$

There Could Be Radio Quiet X-Ray Jets!

- 1 keV X-rays produced by $\gamma \approx 1000/\Gamma$
- $v = 4.2 \times 10^{-6} \gamma^2 \text{ H}[\mu\text{G}]$ $\approx 10 \text{ MHz}$

Cheung,2004ApJ...600L..23C

A Radio Quiet X-Ray Jet?

Correlation of X-ray Jet and Radio Flux Densities

Significance of the X-ray Emission

- 1. X-rays dominate power radiated by jet
- 2. SED through X-ray band provides clues to structure.
 - Acceleration sites
 - Deceleration of bulk motion
 - Proton content

Significance of the X-ray Emission If emission is inverse Compton on the Cosmic Microwave Background

- 3. X-rays give the effective Doppler factor, rest frame B, and electron γ_{min}
- 4. X-ray jets will be detectable at arbitrarily large redshift!