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| >221,000 redshifts
~ tob<19.45

—-medianz =0.11

First 100k z's released June/01
Full catalogue released July/03
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FJRCC The 2dF galaxy redshift survey
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@ T D Galaxy surveys and
University of Durham cosmological simulations

ersity of

Simulations are essential for:

e Taking into account window function and selection effects
e Taking into account non-linear effects and ‘galaxy bias’

e Assessing systematic and random errors

e Comparing data to theory

Simulations must:

e Be realistic

e Have a sufficiently large volume
e Resolve the structures of interest

La rg e n U m be r Of pa rt i C I eS [ Institute for Computational Cosmology ]




 \CDM Hubble Volume Simulation

Hubble Volume g
N-body simulat" &

QA=O.7; Qm=0-3 : 8
h=0.7; 0,=0.9 5

N = 10°
L = 3000 Mpc
m_ = 1x10"2M,

Virgo
consortium

(1999)

- 3000Mpch  —_-—



@ 1 CC Real and simulated 2dF galaxy survey
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HJBCC  The Millennium simulation

Cosmological N-body simulation
e 10 billion particles

* 500 h"" Mpc box

em, =8x108h" M,

UK, Germany, Canada, US

collaboration °Q =1;Q,=0.25; Q ,=0.045;
h=0.73; n=1; 0,=0.9
Simulation data available at: . 20 X Osgals brighter than LMC

http://www.mpa-garching.mpg.de/Virgo _ _ _
’ ’ Carried out at Garching using

Pictures and movies available at: L-Gadget by V. Springel
www.durham.ac.uk/virgo (27 Tbytes of data)
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@ @ Baryon oscillations in the power spectrum
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e Predicted by CDM model

e Can be used to estimate Q,/ Q_

e Provide a “standard ruler” that can be used to measure w

First tentative detection in 100k 2dFGRS
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Oscillations difficult to detect because:

o Amplitude is very small

e Survey window can smooth over features
e Non-linear effects can erase oscillations

e Wiggles are in mass, but we observe galaxies (in z-space)

Need to use large cosmological simulations to establish
— detectability of baryon oscillations.
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1)ICC Baryon oscillations

Baryon oscillations are predicted in the dark
matter P(k) in linear theory:

1. Are they erased by non-linear evolution?

2. Are they also present in the galaxy distribution?

l Institute for Computational Cosmology ]
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@ @ Baryonic wiggles in the power spectrum
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Baryonic oscillations in the dark matter PS survive
non-linear effects for log k <-0.7

What about in the galaxy PS?
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Dark matter
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56237 galaxies
113439 total
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Oh=0.161+ 0.015 : f_
Q/Q =0.194 + 0.045 '
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0_h
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The CMB power spectrum depends on

'Qk"QL’Wb’de’f t,n,n, A r,b

DE’

Combining 2dF and CMB breaks parameter degeneracies

[ Institute for Computational Cosmology ]




(c)|CMB + 24F

— 15

:l ' A L 1 I Ll 4 i I Ll Al i ' LA il I I:
0
-05-025 0 0.256 05 02 04 06 0.8

0, 0, Adding 2dFGRS
power spectrum
forces flatness:

11-Q,,1<0.04
2dFGRS 100k

004 008 0 002 004 008 Efstathiou + 2dFGRS team
o @y MNRAS 330, L29 (2002)
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proof of our exploding universe

Tim Radford Science aditor

Welcome to the dark side.
Around 73% of the universe is
made not of matter or radia-
tion but of a mysterious force
called dark energy, a kind of
gravity in reverse. Dark energy
is listed as the breakthrough of

The Guardian iy "

systematic confirmation of &
puzzling observation [rst
made five years ago — paints
an even more puzzling picture

Dec/19/2003 e

are detectable by telescopes.
But these add up to only 4% of
the whole cosmos.

Now, on the evidence of a
recent space-based probe and
a meticulous survey of a mil-
lion galaxies, astronomers
have filled in at least some of
the picture.

Around 23% of the universe
is made up of another sub-
stance, called “dark matter”.
Nobody knows what this
undetected stuff could be, but
it massively outweighs all the
atoms in all the stars in all the
galaxies across the whole
detectable range of space. The
Temaining 73% is the new dis-
covery: dark energy. This
bizarre foree seems to be push-
ing the universe apart at an
accelerating rate, when gravi-
tational pull should be making
it slow down or contract.

“The implications for these
discoveries about the universe

Science breakthrough of the year
HaCC - -

niversity of Durham

ied it a
first

magnitude”

T:T;KMgs were made by
an orbiting observatory called
the Wilkinson Microwave
Anisotropy Probe (WMAP).
This measured tiny fluctua-
tions in the cosmic microwave
background, in effect the dying
echoes of the Big Bang that
launched time, space and mat-
terin a liny universal firehall.

a million galaxies to see how
they clumped together or
spread out. Both confirmed
that dark energy must exist.
The findings settle 2 number
of arguments about the uni-
verse, its age, its expansion

rate, and its composition, all at
once, Thanks to the two stud-

ies, astronomers now believe
theage ofthe universe is13.7bn -




+JBCC  Cosmological parameters

o
P ‘Qk"QL’Wb’de’f ,wDE,t,nS,nt,AS,r,b)

Data:

* CMB — WMAP, CBI, ACBAR and VSA
* LSS — Full2dFGRS

Method:

e MCMC
e Use halo Model to relate distribution of galaxies to
distribution of mass (galaxy bias)
Sanchez, Padilla, Baugh ‘05
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Qn = 0.224 +£0.024

Qs = 0.055%0.007
Q« = -0.034*0.018
Qr = 0.809 £0.037
h = 0.683 £ 0.031
Free parameters:
ns = 1.07x0.10
() Qk, Q,\, chmhz, Qbhz, ns, T, As 0-8 — 081 2+ 0072

Sanchez etal ‘05
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0.238 + 0.022

Qs 0.042 + 0.003
* LSS - 2dFGRS

h = 0.734£0.025
Free parameters: ne = 0948+ 0.027

® QA, chmhz, Qbhz, ns, T, As

Cole etal ‘05
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2dFGRS and galaxy formation

In addition to cosmology, the 2dFGRS contains
iInformation about the physics galaxy formation

l Institute for Computational Cosmology ]




& € Efficiency of galaxy formation

R * ’ l"._'i
University of Durham

10" M,
10" M,
10 M,
Cooling: +++++ | Cooling: b Cooling:  -----
Feedback: +++++ | Feedback: ++ Feedback: ++
Gal. Formation: - - - - | Gal. Formation: Gal. Formation: - - - -
o ++++ o
Inefficient Inefficient
Eff | C| e n‘t l Institute for Computational Cosmology




in ~10™ M halos

Benson, Cole, Baugh, Frenk &
Lacey 2000, MNRAS
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+JBCL  Groups and clusters in 2dFGRS

Test by:

e Finding groups and clusters in 2dFGRS

® Using simulations to relate groups « — dark halos

l Institute for Computational Cosmology ]




@ RCC i
Mock 2dFGRS groups
from Hubble volume N- |

body simulation

a,/(kms-1)<200

200=0_/(kms=1)<300

+

semianalytic galaxy
formation model

40050 /(kms-1)<500
500= hL kms-1)<700

700s0,/(kms-')

3GP

Eke, Frenk, Cole, E
2dFGRS 2004
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Groups in 2dFGRS

28,213 groups with n 22

(53% of gals)
6,773 groups with n 24

gal

o,/ (kms=")<100
= 1005e /(kms-1)<200
- 20050/ (kms-1)<300
* 30020 /(kms')<400
= 400%0, /(kms"!)<500

)
)

>4 :

* 50020 /(kms)<700

ngal

Median z 0.11

* 700=0,/(kms!

Median vel disp 266 km/s. D,
T
Guest star: Vince Eke

Eke, Frenk, Cole, Baugh +
2dFGRS 2003



overesiimailed
for L<10"h2L,

because of scatter
in L and errors in M

Eke etal ‘04

Group M/L
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Eke etal ‘04

—— Model

- Mock recovered
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@ . How many stars are there
Univrsiyof D and where are there?

Estimate stellar content of 2dFGRS groups using infrared
photometry (R from Cosmos; J & K from 2MASS)

How many stars? Q_ h =(0.99 £ 0.03)x10 (Kennicutt IMF)

stars

Galaxy formation theory

star formation efficiency
depends on halo mass

Where are the stars today ?

l Institute for Computational Cosmology ]
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M<5x102 M

e 2% of stellar
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Conclusions: 2dFGHE
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Analysis of 2dFGRS data requires cosmological simulations

* Millennium sim ] some baryon oscillations survive in gal distr.
From final (221,000 z’s) 2dFGRS :

® Power spectrum [] { Consistent with (flat) ACDM
Significant detection of baryons oscillations

* 2dFGRS + CMB AT/T U
Q. =0.238 + 0.022, Q,_=0.042 + 0.003, h=0.734 + 0.0025

stars

e 2dFGRS + 2mass 0 Q__.h =(0.99 £ 0.03)x10® (Kennicutt IMF)

e 28 200 2dFGRS [ - M/L 1 by x4 from groups - clusters
groups | 50% of stars in halos M<5x102M.

l Institute for Computational Cosmology ]




Conclusions: groups and clusters in
2dFGRS

&€ ¢
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® Power Spectrum [] { Consistent with ACDM

Significant distortions due to baryons
* 2dFGRS + CMB AT/T [
Q =0.3+0.1, Q,=0.7£0.1, Q,=0.04 £ 0.01, h=0.70 + 0.07

e f(o,) [ [ evidence for gravitational instability
b [I1ie on large scales gals trace mass

* Semi-analytic model [ Clustering of halos
Power-law &(r): a coincidence * Occupation stats P(N,M)

Lum fn of all galactic systems | Agree with
* 2dFGRS groups | M/L as a fn of M, . ACDM (SA)

" P(N,M) l

/
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