

The 2dF galaxy redshift survey and cosmological simulations

Carlos S. Frenk Institute for Computational Cosmology, Durham

The residence of the second se

The 2dF Galaxy Redshift Survey

1997- 2002 250 nights at 4m AAT

→221,000 redshifts to b_i<19.45</p>

\rightarrow median z = 0.11

First 100k z's released June/01 Full catalogue released July/03

2dF Galaxy Redshift Survey: Team Members

Ivan K. Baldry¹⁰ Terry Bridges¹ Matthew Colless³ Nicholas Cross⁶ Roberto De Propris⁵ Richard S. Ellis⁷ Edward Hawkins¹² Ian Lewis⁹ Darren Madgwick⁸ John A. Peacock⁴ Mark Seaborne⁹

Carlton M. Baugh² Russell Cannon¹ Chris Collins¹³ Gavin Dalton⁹ Simon P. Driver⁶ Carlos S. Frenk² Carole Jackson³ Stuart Lumsden¹¹ Stephen Moody⁸ Will Precival⁴ Will Sutherland⁴ Joss Bland-Hawthorn¹ <u>Shaun Cole²</u> Warrick Couch⁵ Kathryn Deely⁵ George Efstathiou⁸ Karl Glazebrook¹⁰ Ofer Lahav⁸ Steve Maddox¹² <u>Peder Norberg²</u> Bruce A. Peterson³ Keith Taylor⁷

Institutions

¹Anglo-Australian Observatory ³The Australian National University ⁵University of New South Wales ⁷California Institute of Technology

⁹University of Oxford ¹¹University of Leeds ²University of Durham ⁴University of Edinburgh ⁶University of St Andrews ⁸University of Cambridge ¹⁰Johns Hopkins University ¹²University of Nottingham

¹³ Liverpool John Moores University

12 Institutions

33 people at

Institute for Computational Cosmology

Institute for Computational Cosi log

Galaxy surveys and cosmological simulations

Simulations are essential for:

- Taking into account window function and selection effects
- Taking into account non-linear effects and 'galaxy bias'
- Assessing systematic and random errors
- Comparing data to theory

Simulations must:

- Be realistic
- Have a sufficiently large volume
- Resolve the structures of interest
- \Rightarrow Large number of particles

Hubble Volume N-body simulatⁿ

 $Ω_{\Lambda}$ =0.7; $Ω_{m}$ =0.3 h=0.7; $\sigma_8=0.9$ $N_{p} = 10^{9}$ L = 3000 Mpc $m_p = 1 \times 10^{12} M_o$ Virgo consortium (1999)

ACDM Hubble Volume Simulation

3000 Mpc/h

Real and simulated 2dF galaxy survey

Institute for Computational Cosmology

The Millennium simulation

UK, Germany, Canada, US collaboration

Simulation data available at:

http://www.mpa-garching.mpg.de/Virgo

Pictures and movies available at:

www.durham.ac.uk/virgo

Cosmological N-body simulation

- 10 billion particles
- 500 h⁻¹ Mpc box
- $m_p = 8 \times 10^8 \, h^{-1} \, M_o$
- $\Omega = 1$; $\Omega_m = 0.25$; $\Omega_b = 0.045$; h=0.73; n=1; $\sigma_8 = 0.9$
- 20 ×10⁶ gals brighter than LMC

Carried out at Garching using L-Gadget by V. Springel

(27 Tbytes of data)

The non-linear mass power spectrum is accurately determined by the Millennium simulation over large range of scales

Institute for Computational Cosmology

University of Durham

Baryon oscillations in the power spectrum

- Predicted by CDM model
- \bullet Can be used to estimate $\Omega_{\rm b}/ \ \Omega_{\rm m}$
- Provide a "standard ruler" that can be used to measure w

First tentative detection in 100k 2dFGRS

100k 2dFGRS power spectrum

2dFGRS PS divided by Ωh=0.25 CDM model (zero baryons) (x) ⁹²

Percival etal 2001

Institute for Computational Cosmology

Baryon oscillations in the power spectrum

Oscillations difficult to detect because:

- Amplitude is very small
- Survey window can smooth over features
- Non-linear effects can erase oscillations
- Wiggles are in mass, but we observe galaxies (in z-space)

Need to use large cosmological simulations to establish detectability of baryon oscillations.

Baryon oscillations

Baryon oscillations are predicted in the dark matter P(k) in linear theory:

- 1. Are they erased by non-linear evolution?
- 2. Are they also present in the galaxy distribution?

Millennium simulation

The Millennium sim is large enough to resolve baryonic wiggles in the matter power spectrum

Millennium simulation

Millennium simulation

Millennium simulation

Non-linear evolution accelerates the growth of power and eliminates structure in the spectrum by mode-coupling

Millennium simulation

Non-linear evolution accelerates the growth of power and eliminates structure in the spectrum by mode-coupling

Baryonic wiggles in the power spectrum

Baryonic oscillations in the dark matter PS survive non-linear effects for log k \leq -0.7

What about in the galaxy PS?

z = 0 Dark Matter

Populating the MS with galaxies

125 Mpc/h

Semi-analytic modelling
Find dark matter halos
Construct halo merger trees
Apply SA model (gas cooling, star formation, feedback)

Springel etal 04

z = 0 Galaxy light

Crotton etal 05

Dark matter

10¹⁴M_o

Galaxies

Institute for Computational Cosmology

Baryon wiggles in the galaxy distribution

Power spectrum from MS divided by a baryon-free ACDM spectrum

Galaxy samples matched to plausible large observational surveys at given z

Springel et al 2004

The final 2dFGRS power spectrum

The final 2dFGRS power spectrum

Baryon oscillations conclusively detected in 2dFGRS!!!

Demonstrates that structure grew by gravitational instability in ΛCDM universe

Cole + 2dFGRS '05

The final 2dFGRS power spectrum: parameter estimation

- Shape of P(K)
 depends on Ωh
- Oscillations depend on $\Omega_{\rm b}/ \, \Omega_{\rm m}$
- Amplitude depends on σ_8^{gal}

 $\Omega h = 0.161 \pm 0.015$

$$\Omega_{\rm b}\!/\,\Omega_{\rm m}=0.194\pm0.045$$

 $\sigma_8^{\text{gal}}(L_*) = 0.870 \pm 0.029$

Cole + 2dFGRS '05

Cosmological parameters: CMB + 2dF

The 2dF power spectrum depends on $\Omega_{\rm m}$ h, $\Omega_{\rm b}/\Omega_{\rm m}$, $\sigma_8^{\rm gal}$, f_v , ... The CMB power spectrum depends on $\left(\Omega_k, \Omega_L, w_b, w_{\rm dm}, f, w_{DE}, t, n_s, n_t, A_s, r, b\right)$

Combining 2dF and CMB breaks parameter degeneracies

2dFGRS + CMB: flatness

Boomerang, DAS, Maxma, CBI

CMB alone has a geometrical degeneracy: large curvature is not ruled out

Adding 2dFGRS power spectrum forces flatness:

| **1 - Ω**_{tot} | < 0.04

2dFGRS 100k

Efstathiou + 2dFGRS team MNRAS 330, L29 (2002)

The Guardian Dec/19/2003

Science breakthrough of the year proof of our exploding universe

Tim Radford Science editor Welcome to the dark side. Around 73% of the universe is made not of matter or radiation but of a mysterious force called dark energy, a kind of gravity in reverse. Dark energy is listed as the breakthrough of the year in the US journal Science today.

The discovery — in fact, a systematic confirmation of a puzzling observation first made five years ago — paints an even more puzzling picture of an already mysterious universe. Around 200bn galaxies, each containing 200bn stars, are detectable by telescopes. But these add up to only 4% of the whole cosmos.

Now, on the evidence of a recent space-based probe and a meticulous survey of a million galaxies, astronomers have filled in at least some of the picture.

Around 23% of the universe is made up of another substance, called "dark matter". Nobody knows what this undetected stuff could be, but it massively outweighs all the atoms in all the stars in all the galaxies across the whole detectable range of space. The remaining 73% is the new discovery: dark energy. This bizarre force seems to be pushing the universe apart at an accelerating rate, when gravitational pull should be making it slow down or contract.

"The implications for these discoveries about the universe are truly stunning," said Don Kennedy the editor of Science. "Cosmologists have been trying for years to confirm the hypothesis of a discovery of the first magnitude." The findings were made by

Ine unions were made by an orbiting observatory called the Wilkinson Microwave Anisotropy Probe (WMAP). This measured tiny fluctuations in the cosmic microwave background, in effect the dying echoes of the Big Bang that launched time, space and matlate in a time universal fireball.

These painstaking measurements were then backed up by the telescopes of the Sloan Digital Sky Survey, which mapped a million galaxies to see how they clumped together or spread out. Both confirmed that dark energy must exist.

The findings settle a number of arguments about the universe, its age, its expansion rate, and its composition, all at once. Thanks to the two studies, astronomers now believe the age of the universe is 13.7bm

onal Cosmology

Cosmological parameters

$$P^{o}\left(\Omega_{k},\Omega_{L},w_{b},w_{dm},f\right), w_{DE},t,n_{s},n_{t},A_{s},r,b$$

Data:

- CMB \rightarrow WMAP, CBI, ACBAR and VSA
- LSS \rightarrow Full 2dFGRS

Method:

- MCMC
- Use halo Model to relate distribution of galaxies to distribution of mass (galaxy bias)

Sanchez, Padilla, Baugh '05

Parameter constraints

$$P^{o}(\Omega_{k}, \Omega_{L}, w_{b}, w_{dm}, t, n_{s}, A_{s})$$

CMB only...

CMB + 2dF...

Parameter constraints

$$P^{o}(\Omega_{k}, \Omega_{L}, w_{b}, w_{dm}, t, n_{s}, A_{s})$$

CMB only...

CMB + 2dF...

Effect of neutrinos

Free-stream length: 80 $(\Sigma m_v / eV)^{-1}$ Mpc

 $(\boldsymbol{\Omega}_{\rm m}\,h^2 = \boldsymbol{\Sigma}m_{\rm v}\,/\,93.5~{\rm eV})$

 $\Sigma m_v \sim 1 \text{ eV}$ causes lower power at almost all scales, or a bump at the largest scales

100k 2dFGRS $\rightarrow \Sigma m_v < 1.8 \text{ ev}$

Eleroy + 2dFGRS team '02

Parameter constraints

$$P^{o}(\Omega_{L}, w_{b}, w_{dm}, \mathbf{f}, t, n_{s}, A_{s})$$

CMB only...

Institute for Computational Cosmology

Parameter estimation

CMB + 2dFGRS

Data:

- CMB \rightarrow WMAP, CBI, ACBAR and VSA
- LSS \rightarrow 2dFGRS
- Free parameters:
- $\Omega_{k}, \Omega_{A}, \Omega_{cdm}h^{2}, \Omega_{b}h^{2}, n_{s}, \tau, A_{s}$

Sanchez etal '05

Ω_{m} =	0.224 ± 0.024
Ω _b =	0.055 ± 0.007
Ωk =	-0.034 ± 0.018
Ω_{Λ} =	0.809 ± 0.037
h =	0.683 ± 0.031
n₅ =	1.07 ± 0.10
σ ₈ =	0.812 ± 0.072

Data:

Parameter estimation

CMB + 2dFGRS

For a flat model

- CMB \rightarrow WMAP, CBI, ACBAR and VSA
- LSS \rightarrow 2dFGRS
- Free parameters:
- $\Omega_{A}, \Omega_{cdm}h^2, \Omega_{b}h^2, n_s, \tau, A_s$

$\Omega_{m} = 0.238 \pm 0.022$ $\Omega_{b} = 0.042 \pm 0.003$ $h = 0.734 \pm 0.025$ $n_{s} = 0.948 \pm 0.027$

Cole etal '05

2dFGRS and galaxy formation

In addition to cosmology, the 2dFGRS contains information about the physics galaxy formation

10¹⁰ M

Efficiency of galaxy formation

10¹⁵ M_o

Cooling: +++++ Feedback: +++++ Gal. Formation: - - - -Inefficient

Cooling: ++++ Feedback: ++ Gal. Formation: ++++ Efficient

10¹² M

Cooling: -----Feedback: ++ Gal. Formation: ----Inefficient

Institute for Computational Cosmology

Halo mass-to-light ratios

Theoretical prediction (semi-analytic)

Galaxy formation is most efficient in ~10¹² M_o halos

Benson, Cole, Baugh, Frenk & Lacey 2000, MNRAS

Groups and clusters in 2dFGRS

Test by:

- Finding groups and clusters in 2dFGRS
- Using simulations to relate groups $\leftarrow \rightarrow$ dark halos

Mock 2dFGRS groups from Hubble volume Nbody simulation

+

semianalytic galaxy formation model

Eke, Frenk, Cole, E 2dFGRS 2004

Groups in 2dFGRS

- 28,213 groups with n_{gal}≥2 (53% of gals)
- 6,773 groups with n_{gal}≥4

n_{gal}≥4∶

Median z 0.11

Median vel disp 266 km/s

Guest star: Vince Eke

Eke, Frenk, Cole, Baugh + 2dFGRS 2003

Halo mass-to-light ratios

$$N_{min}=2, z_{max}=0.07$$

Errors in M and L cause mocks to deviate from model prediction

M/L overestimated for L<10¹⁰h⁻²L_o because of scatter in L and errors in M

Eke etal '04

Halo mass-to-light ratios

Errors in M and L cause mocks to deviate from model prediction

Mocks and data agree well!

Eke etal '04

 $N_{min}=2, z_{max}=0.07$

Factor of 4 decrease in M/L from rich clusters to poor groups

Tentative detection of the minimum

Eke etal '04

Halo mass-to-light ratios

How many stars are there and where are there?

Estimate stellar content of 2dFGRS groups using infrared photometry (R from Cosmos; J & K from 2MASS)

How many stars? $\Omega_{\text{stars}}h = (0.99 \pm 0.03) \times 10^{-3}$ (Kennicutt IMF)

Galaxy formation theory

⇒ star formation efficiency depends on halo mass

Where are the stars today ?

Where are the stars?

ACDM (semi-analytic) model predicts:

 Most stellar mass is in LG objects (M~3x10¹² M_o)

 50% of stellar mass in halos of M<5x10¹² M₀

 2% of stellar mass in clusters (M~5x10¹⁴ M₀)

Where are the stars?

ACDM (semi-analytic) model predicts:

 Most stellar mass is in LG objects (M~3x10¹² M_o)

 50% of stellar mass in halos of M<5x10¹² M₀

 2% of stellar mass in clusters (M~5x10¹⁴ M₀)

Where are the stars?

ACDM (semi-analytic) model predicts:

 Most stellar mass is in LG objects (M~3x10¹² M_o)

 50% of stellar mass in halos of M<5x10¹² M₀

 2% of stellar mass in clusters (M~5x10¹⁴ M₀)

Conclusions: 2dFGRS

Analysis of 2dFGRS data requires cosmological simulations

- Millennium sim \Rightarrow some baryon oscillations survive in gal distr. From final (221,000 z's) 2dFGRS :
- Power spectrum \Rightarrow Consistent with (flat) Λ CDM Significant detection of baryons oscillations
- 2dFGRS + CMB $\Delta T/T \Rightarrow$ $\Omega_{\rm m}$ =0.238 ± 0.022, $\Omega_{\rm h}$ =0.042 ± 0.003, h=0.734 ± 0.0025
- 2dFGRS + 2mass $\Rightarrow \Omega_{stars}h = (0.99 \pm 0.03)x10^{-3}$ (Kennicutt IMF)
- 28,200 2dFGRS $\Rightarrow \begin{cases} M/L \uparrow by x4 \text{ from groups} \rightarrow \text{clusters} \\ 50\% \text{ of stars in halos } M<5x10^{12}M_{\odot} \end{cases}$

Institute for Computational Cosmology

Conclusions: groups and clusters in 2dFGRS

• Power spectrum \Rightarrow Consistent with Λ CDM Significant distortions due to baryons • $2dFGRS + CMB \Delta T/T \Rightarrow$ $\Omega_{m}=0.3 \pm 0.1, \ \Omega_{\Lambda}=0.7 \pm 0.1, \ \Omega_{b}=0.04 \pm 0.01, \ h=0.70 \pm 0.07$ • $\xi(\sigma,\pi) \Rightarrow \begin{cases} \text{evidence for gravitational instability} \\ b \cong 1 \text{ ie on large scales gals trace mass} \end{cases}$ • Semi-analytic model \Rightarrow Clustering of halos Power-law $\xi(r)$: a coincidence Occupation stats P(N,M) • 2dFGRS groups Lum fn of all galactic systems M/L as a fn of M_{halo} P(N,M) Agree with ACDM (SA ACDM (SA)