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In this work we calculate the properties of proton-neutron and neutron stars obtained from various equations of
state (EOS) in relativistic models. We consider neutrino free and trapped neutrino equations of state either at
zero temperature or fixed entropies. Possible mixed phases with hadrons and quarks in the interior of the stars
are investigated. More sophisticated models which take into account delta meson interactions are also included.

1. INTRODUCTION AND FORMALISM

Landau predicted the possible existence of a neu-
tron star after the neutrons were discovered by Chad-
wick in 1932. In 1934, it was suggested that neutron
stars were formed after a supernova explosion, which
happens when the core of a very massive star under-
goes gravitational collapse. The first supernova explo-
sion was registered in 1054 by the Chinese. Once the
gravitational collapse of a massive star takes place, a
proto-neutron star can be formed. Several different
stages may happen during the evolution process. The
proto-neutron stars cool down to form a neutron star.
The structure of compact stars is characterized by its
mass and radius, which in turn are obtained from ap-
propriate equations of state (EOS) at densities about
one order of magnitude higher than those observed in
ordinary nuclei [1, 2].

In this work we investigate the equation of state
(EOS) of cold and warm, β-equilibrium hadron/quark
matter and apply it to determine the properties of
mixed stars consisting of hadron matter with hyper-
ons and quark matter. We build the mixed phase with
hadron and quark matter and search for the possibil-
ity of a pure quark matter core inside compact stars.
The calculations are performed for zero temperature
and finite entropies in order to describe neutron and
proto-neutron stars. We also verify the importance
of including trapped neutrinos and consider entropies
from zero to 2 Boltzmann units.

For the low density phase we consider two hadron
models, the non-linear Walecka model (NLWM) [3]
and the quark-meson-coupling model (QMC) [4], both
with hyperons included. In the QMC model, the nu-
cleon in nuclear medium is assumed to be a static
spherical MIT bag in which quarks interact with the
scalar and vector fields, σ, ω and ρ and these fields are
treated as classical fields in the mean field approxima-
tion. We also study the effect of including the δ-meson
in the NLWM. Its presence introduces in the isovector
channel the same structure of relativistic interactions.

For the high density phase we consider three mod-
els, namely, the MIT bag model [5] to which we also
refer as unpaired quark model (UQM), the Nambu-

Jona-Lasinio model (NJL) [6] and the color flavor
locked quark phase (CFL) [7]. The NJL model is a
chiral symmetric model which allows us to study the
effect of dynamical quark masses on the EOS.

At intermediate energies we build a mixed phase of
hadrons and quarks by enforcing Gibbs coexistence
conditions. All equations used for the above men-
tioned models in mean field theory are given in the lit-
erature. The details of the calculation are discussed in
[9], [10], [11] where the complete formalism is shown.
Once the EOSs are obtained we have expressions for
the energy density E , pressure P and baryonic density
ρB , from which the corresponding star properties are
computed.

β equilibrium and charge neutrality are basic con-
ditions for the construction of the star EOS. They are
enforced in hadronic matter respectively by

µBi
= QB

i µn − Qe
i µe (1)

and
∑

B

Qe
BρB +

∑

l

qlρl = 0,

where Qe
i is the electric charge of baryon or quark i,

QB
i is the baryonic charge of baryon or quark i, and

ql stands for the electric charges of the leptons.
The same conditions are necessary in quark matter

and they read

µs = µd = µu + µe, µe = µµ (2)

and

ρe + ρµ =
1

3
(2ρu − ρd − ρs).

In the mixed phase charge neutrality is imposed
globally:

χ ρQP
c + (1 − χ)ρHP

c + ρl
c = 0, (3)

where ρiP
c is the charge density of the phase i, χ is the

volume fraction occupied by the quark phase and ρl
c

is electric charge density of the leptons.
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The Gibbs conditions for phase coexistence are
given by

µHP = µQP , THP = TQP ,

PHP (µHP , T ) = PQP (µQP , T ), (4)

where QH (HP ) refers to quark (hadron) phase. The
chemical equlibrium conditions (1) and (2) in the
mixed phase become

µu = (µn − 2µe)/3, µd = µs = (µn + µe)/3 (5)

and the energy and baryonic densities read:

< E >= χ E
QP + (1 − χ)EHP + E

l, (6)

where E l is the energy density of the leptons and

< ρ >= χ ρQP + (1 − χ)ρHP . (7)

If neutrino trapping is imposed to the system, the
beta equilibrium condition is altered from (1) to

µBi
= QB

i µn − Qe
i (µe − µνe

).

According to [1], the total leptonic number YL is con-
stant throughout the star. We take it to be

YL = Ye + Yνe
= 0.4.

In the sequel, we identify the neutrino free EOS
with Yνe

= 0 and the EOS with trapped neutrinos
with YL = 0.4.

Properties of compact stars whose matter obeys the
EOS calculated with the above models are obtained
from the the equations for the structure of a rela-
tivistic spherical and static star composed of a perfect
fluid, which were derived from Einstein’s equations by
Tolmann, Oppenheimer and Volkoff [12]:

dP

dr
= −

G

r

[ε + P ]
[

M + 4πr3P
]

(r − 2GM)
, (8)

dM

dr
= 4πr2ε,

where G is the gravitational constant and M(r) is the
enclosed gravitational mass. For all the EOS consid-
ered in the present work, the value of r (= R), where
the pressure vanishes defines the surface of the star.

2. RESULTS AND DISCUSSIONS

All the models used are parameter dependent. The
parameters of the models are fixed by reproducing
properties of nuclear matter or nucleon properties.
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Figure 1: EOS obtained with the NLWM and a) the
UQM b) the NJL model [9].

For the NLWM, we use the coupling constants de-
fined in [2] for which the compression modulus is 300
MeV and the effective mass is 0.7M . When δ mesons
are included we take the parameter set of ref. [8],
for which EB = −16 MeV at the saturation density
ρ0 = 0.16 fm−1, the symmetry coefficient is 32 MeV,
the compression modulus is 240 MeV and the effec-
tive mass is 0.75M . For the QMC the parameters are
shown in [10] and they reproduce EB = −15.7 MeV
at ρ0 = 0.15 fm−3, asym = 32.5 MeV, K = 257 MeV
and M∗ = 0.774M . For the NJL model the chosen
parameters are given in [9] and they are fixed in order
to fit the values in vacuum for the pion mass, the pion
decay constant, the kaon mass, and the quark con-
densates. The value of the bag constant is mentioned
throughout the text. For the CFL we use a gap param-
eter equal to ∆ = 100 MeV. Based on quark count-
ing arguments we take the meson hyperon couplings
gσB =

√

2/3 gσN , gσB =
√

2/3 gσN , gωB =
√

2/3 gωN

and gρB =
√

2/3 gρN .
We start by showing the results obtained with the

NLWM for the hadron phase and the UQM and NJL
models for the quark phase. In what follows the bag
contant is B1/4 = 190 MeV.
From Fig. 1 one can see that the EOSs are harder and
the mixed phase appears at higher densities if neutrino
trapping is required independently of the model used.
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Figure 2: Strangeness fraction for the EOS with a) the
UQM b) the NJL model for the quark phase.

Finite temperature also makes the EOS softer because
the number of states available increases with T . In the
quark phase with neutrino trapping the NJL model
shows a harder EOS than the neutrino free one due to
a higher s-quark mass. Neutrino trapping shifts chiral
symmetry restoration to higher densities.

From Fig. 2 one can observe that when the quark
phase is described by the Bag model the strangeness
fraction rises steadly and, at the onset of the pure
quark phase it has almost reached 1/3 of the baryonic
matter if no trapping is imposed. It reaches a lower
value once neutrino trapping is enforced. A constant
lepton fraction implies higher fractions of electrons
at high densities and, therefore, smaller s-quark frac-
tions. The NJL model predicts a different behavior.
In the mixed phase the strangeness fraction decreases
with density. This behavior is due to fact that for the
densities at which the mixed phase occurs the mass of
the strange quark is still very high. The net effect of
the entropy is to increase the strangeness fraction.

Notice, from Fig. 3 that the distribution of particles
is altered if neutrino trapping is imposed. Trapping
pushes the onset of hyperons, the mixed phase and the
pure quark phase to higher energies. The pure quark
phase is only slightly affected but the mixed phase can
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Figure 3: Particle fractions Yi = ρi/ρ, for i = baryons,
leptons and quarks, obtained with the NLWM plus the
UQM for S = 1 and a)Yνe

= 0 b)YL = 0.4.

occur at a density that is ρ0 ∼ 2ρ0 higher. The impo-
sition of trapped neutrinos influences the threshold of
hyperons and quarks through the conditions of charge
conservation and chemical equilibrium.

It is important to determine the range of temper-
atures involved in the cooling process of a proto-
neutron stars. This is plotted in Fig. 4, from where we
can see that the maximum temperatures reach about
35 MeV if S = 2 and 17 MeV if S = 1. Moreover, it is
shown that neutrino trapping makes the temperature
vary more and reach a higher value in the mixed phase
and a lower value in the quark phase. The reduction
of T during the mixed phase is due to the opening of
new degrees of freedom due to deconfinement.

For most EOSs studied and displayed in I and II,
the central energy density ε0 falls inside the mixed
phase. The maximum masses of the stars decrease
with increasing entropy and are systematically larger
if neutrino trapping is enforced. For the present EOSs,
the maximum mass of stable stars are larger if neu-
trinos are trapped. This difference is much smaller
when the quark phase is described within NJL due,
possibly, to the smaller s-quark content.

Next we show the results obtained with the QMC
model for the hadron phase and the UQM and CFL
models for the quark phase. The EOS are shown in
Fig. 5. The EOSs are harder if neutrino trapping is
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Figure 4: Temperature range obtained with the NLWM
plus a) Bag model b) NJL model. In both figures the
solid lines stand for the case with neutrino trapping and
the dashed line without neutrino trapping.

Table I Hybrid star properties for the EOS obtained
with the NLWM and the NJL model. Energy densities
are given in fm−4.

EOS S Mmax/M� ε0 εmin εmax

Yνe
= 0 0 1.84 6.29 4.60 7.25

Yνe
= 0 1 1.84 5.99 4.35 6.62

Yνe
= 0 2 1.83 5.38 3.18 5.66

YL = 0.4 0 2.05 6.14 4.92 6.94

YL = 0.4 1 2.02 6.20 4.72 6.46

YL = 0.4 2 1.96 5.72 4.50 6.00

Table II Hybrid star properties for the EOS obtained
with the NLWM and the UQM. Energy densities are
given in fm−4.

EOS S Mmax/M� ε0 εmin εmax

Yνe
= 0 0 1.64 4.58 1.81 6.06

Yνe
= 0 1 1.51 5.07 1.87 6.00

Yνe
= 0 2 1.45 4.95 1.98 5.81

YL = 0.4 0 1.98 5.31 3.47 7.38

YL = 0.4 1 1.89 5.20 3.03 6.99

YL = 0.4 2 1.81 5.08 2.98 6.82

Table III Hybrid star properties - EOS with Yνe
= 0

model B1/4 Mmax/M� ε0 εmin εmax

QMC+UQM 190 1.58 5.52 1.63 7.02

QMC+UQM 200 1.73 4.85 2.05 8.74

QMC+CFL 190 1.32 12.56 1.35 4.56

QMC+CFL 200 1.49 3.31 1.92 6.25

NLWM+UQM 190 1.64 4.58 1.81 6.06

Table IV Hybrid star properties - EOS with YL = 0.4

model B1/4 ms
Mmax

M�

Mb

M�
R ε0

QMC+UQM 190 150 1.94 2.15 12.09 5.47

QMC+UQM 200 150 1.99 2.22 11.97 5.63

QMC+UQM 200 150 1.73 1.93 12.44 4.89

(Yνe
= 0)

NLWM+UQM 190 150 1.64 1.83 12.84 4.5

(Yνe
= 0)

NLWM+UQM 190 150 2.00 2.22 12.59 5.06

(YL = 0.4)

QMC+CFL 190 150 1.80 1.99 10.86 7.32

QMC+CFL 200 150 1.83 2.02 11.36 6.57

QMC+CFL 200 150 1.49 1.65 13.4 3.32

(Yνe
= 0)

imposed, independently of the model used. A larger s-
quark mass and a larger B parameter make the quark
EOSs harder in the mixed phase, a fact that manifests
itself on the maximum mass stellar configuration. If
compared with the NLWM, the QMC provides softer
EOS at low densities and harder at intermediate den-
sities. The transition to a pure quark phase occurs
at lower densities in the NWLM. This behavior has
consequences on the properties of the corresponding
families of stars.

In tables III and IV we display the hybrid star
properties with and without trapped neutrinos respec-
tively. The strange quark mass is ms = 150 MeV, the
energies are given in fm−4, B1/4 is given in MeV and
the star radius R in Km. Notice that the maximum
baryonic masses obtained within the NLWM are larger
and the difference of maximum masses for trapped
and untrapped matter is smaller for the QMC than
for the NLWM. This means that the number of stars
that would decay into a blackhole is much smaller in
the QMC model and is probably due to the fact that
no hyperons are formed in the interior of stars ob-
tained with QMC for ms = 150 MeV and B1/4 = 190
MeV contrary to the NLWM case. If the quark phase
is a CFL state the baryonic mass difference between
the neutrino rich stars and neutrino poor is greater
than in the UQM. This is understood because in the
quark phase there are no electrons and therefore the
0.4 fraction of leptons is all due to neutrinos. The
greater flux of neutrinos carries out more energy. For
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Figure 5: Equation of state obtained with the QMC
model plus (a) UQM (b) CFL. In the figures above,
YL = 0.4 unless stated otherwise.

a finite temperature calculation we expect a smaller
effect.

A straightforward method of determining neutron
star properties is by measuring the gravitational red-
shift of spectral lines produced in neutron star pho-
tosphere which provides a direct constraint on the
mass-to-radius ratio. Two recent measurements im-
pose the constraints M�/R(km) = 0.15 [13] and

6 8 10 12 14 16 18

R (km)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

M
(M

)

.. .
. .
.

(a)

Figure 6: QMC plus UQM (solid line), QMC plus CFL
(dotted line), NLWM plus UQM (long-dashed line),

B1/4=190 MeV

M�/R(km) = 0.12 − 0.23 [14] respectively. From
Fig. 6 we conclude that only the EOS for QMC plus
CFL with B1/4=190 MeV barely satisfies the first con-
straint. In fact, this constraint excludes all the EOS
with hyperons, quarks or obtained within a relativis-
tic mean-field approach. However, all the curves pre-
sented in Fig. 6 are consistent with the second con-
straint.

Until now, we have considered the exchange of the
mesons σ, ω and ρ at the hadronic level. How-
ever, a formally consistent relativistic effective field
model should include on the same footing isoscalar
and isovector meson fields. Scalar isovector virtual
δ(a0(980)) mesons are important in hadronic effective
field theories when asymmetric nuclear matter is stud-
ied [11]. We include delta meson interactions in the
NLWM for the hadronic phase and check its conse-
quences. Only in this calculation the coupling con-
tants with the hyperons are taken as 0.7 gσN for the
the σ and δ and are taken as 0.783 gωN for the ω and
ρ.

For nucleonic stars the inclusion of the δ meson
makes the EOS harder, as can be seen form Fig. 7. If
hyperons (and quarks) are taken into account the EOS
with δ meson suffers a transition to proton-neutron-
hyperon phase at lower energies and becomes softer.
From tables V and VI some conclusions can be drawn.
In these tables NA means non-applicable and it is used
when no mixed phases are constructed. The inclusion
of δ in a star with hyperons results in opposite conse-
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Figure 7: a) EOS with Yνe
= 0; b) EOS with YL = 0.4

Table V Hadronic and hybrid star properties for the
EOSs obtained with the NLWM and the UQM, Yνe

= 0,
S = 0, Bag1/4=180 MeV, R is in Km and energies in
fm−4

hadrons
Mmax

M�

Mb

M�
R ε0 εmin εmax

no δ pn 2.09 2.45 10.88 6.99 NA NA

with δ pn 2.15 2.56 11.35 6.52 NA NA

no δ pnH 1.72 1.95 10.76 7.41 NA NA

with δ pnH 1.71 1.94 11.31 6.71 NA NA

no δ pnHq 1.47 1.64 10.58 7.43 1.36 6.22

with δ pnHq 1.45 1.61 10.49 7.87 1.26 6.31

Table VI Hadronic and hybrid star properties for the
EOSs obtained with the NLWM and the UQM, YL = 0.4,
Bag1/4=180 MeV, R is in Km and energies in fm−4.

S hadrons
Mmax

M�

Mb

M�
R ε0 εmin εmax

no δ 0 pn 2.02 2.29 10.66 7.55 NA NA

with δ 0 pn 2.04 2.31 10.73 7.33 NA NA

no δ 0 pnq 1.82 2.02 11.62 6.31 2.98 7.68

with δ 0 pnq 1.80 1.99 11.85 6.25 2.33 7.55

no δ 0 pnH 1.89 2.10 10.91 7.06 NA NA

with δ 0 pnH 1.88 2.09 10.51 7.03 NA NA

with δ 0 pnHq 1.81 2.00 11.53 6.34 2.30 7.73

with δ 1 pn 2.04 2.28 - 7.35 NA NA

with δ 1 pnq 1.78 1.95 - 6.36 2.25 7.82

with δ 1 pnH 1.86 2.04 - 6.80 NA NA

with δ 1 pnHq 1.78 1.94 - 6.34 2.27 7.76
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Figure 8: Compact stars: Mass versus radius

quences in the star properties if compared with a star
only with protons and neutrons. In a nucleonic star
the maximum gravitational and baryonic masses in-
crease with the inclusion of the δ mesons whereas the
central energy density decreases. In a pnH star, the
masses decrease with the inclusion of the δ and the
central energy density increases. So, while a harder
EOS like the nucleonic with δ EOS supports a larger
mass giving rise to a larger value for the maximum
mass of a stable star, a softer EOS like the pnH or
pnHq δ EOS supports a smaller mass and the maxi-
mum mass of a stable star is smaller. If we consider
stars with M > 0.5M�, pn stars with δ-meson have
always larger radius for a given mass than the cor-
responding stars without the δ-meson. This is not
anymore true for hyperon or hybrid stars, due to the
larger softening undertaken by the EOSs with the δ
meson when the onset of hyperons and/or quarks oc-
curs.

It is clear that the inclusion of the δ-meson makes
the EOS for nuclear matter harder. However the on-
set of hyperons and/or quarks in these stars gives rises
to a larger softening. In particular maximum stable
stars have in these cases lower masses and smaller ra-
dius. All EOS with and without deltas satisfy both
constraints imposed by spectral measurements, as can
be seen from Fig. 8.

3. CONCLUSIONS

We have studied different EOSs in order to describe
protoneutron and neutron stars. For this purpose, we
have assumed that at low density the star is consti-
tuted of hadrons (nucleons and possibly hyperons) de-
scribed within two different models NLWM and QMC,
at intermediate energies it is constituted of a mixed
phase of hadrons and quarks and at very high densi-
ties a possible quark phase was investigated. For the
quark phase we have considered the MIT bag model
with and without a CFL phase, and the NJL model.
Moreover, we have studied EOS for stars after delep-
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tonization (neutrino free) and with trapped neutri-
nos. Independently of the models used for the hadron
and quark phases we have verified that the maximum
stellar masses are larger once trapped neutrinos are
considered, if hyperons and/or quarks are included.
Depending on the amount of neutrinos present in the
protoneutron star, it may decay into a low mass black
hole or into a neutron star. The amount of neutri-
nos, on the other hand, depend on the EOS used
[9–11]. Larger fractions of hyperons and/or s-quark
correspond to larger fractions of neutrinos. Another
point of interest is that generally the stellar central
energy density corresponding to the most massive sta-
ble stars lies inside the mixed phase. Stars with quark
core are not probable within the present models. It is
important to stress that astrophysical measurements
can impose constraints on the stellar mass-to-radius
ratio, for instance. More precise measurements are
necessary in order to rule out some of the EOSs used
in the literature.
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