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Large-scale convective instability owing to the neutronization of matter in a protoneutron star during the

collapse of star with low initial entropy are considered. The 3D hydrodynamic calculation on nested grids with

three level shows that large-scale bubbles of hot matter with size 106 cm arise to surface neutrinosphere. When

the bubbles reaches low density, the neutrinos contained in matter freely escape from it in the regime of volume

radiation. The characteristic time of this process is equalled to 3.5 ms. The shock from the initial bounce when

the collapse in the stellar core stops will then be supported by the neutrino emission, resulting in the ejection of

an envelope. In rotating protoneutron star the large scale bubbles come to the surface of the stellar core along

the axis of rotation. Neutrino with energy 30-50 MeV are contained in the bubbles. Calculations shows that

time of neutrino emission form such bubble is equal near 1 ms with mean energy of neutrino 30-40 MeV.

1. INTRODUCTION

At the present time two mechanisms have been pro-
posed to explain the supernova. The first is connected
with the rapid ejection of the stellar envelope when the
shock wave (resulting from the rapid compression and
deceleration of material at higher-than-nuclear den-
sities) passes through it [1]. The second mechanism
involves heating of material behind the shock front
by neutrinos, which escape from the neutrinosphere
surrounding the protoneutron star and facilitate the
further passage of the shock and ejection of the stellar
envelope [2]. However, subsequent numerical simu-
lations showed that these two mechanisms are inad-
equate for several reasons. In the first model, the
so-called ”fast” mechanism, the shock loses some of
its energy during the division of iron-group nuclei
into free nucleons;then, when it arrives at the neu-
trinosphere, the emission of neutrinos from the front
carries away energy and decreases the lepton number
in the shock material, decreasing the shock’s energy
and pressure. All these processes weaken the shock,
so that it is stopped in the flow of material accreting
around the core [1]. In many ways, the action of the
second mechanism is determined by conditions in the
region between the neutrinosphere and shock, and is
critical for the neutrino luminosity and the mean spec-
tral energy. The required luminosity can be reached
only if convection is invoked in both the lower neu-
trinosphere and at higher levels. In turn, this con-
vection can develop only when the heating of mate-
rial and formation of a region of instability near the
neutrinosphere occurs more rapidly than the motion
of material from the shock toward the surface of the
protoneutron star [3].

Numerical simulations of convection near and below
the neutrinosphere [4] taking into account neutrino
transport showed that the convective rate is too small
relative to the rate at which material flows in through
the boundary of the neutrinosphere to provide a sig-
nificant transport of energy and leptons. During the

collapse of the iron core, about 99% of the gravita-
tional energy of the forming neutron star is carried
away in the form of neutrinos. In order to eject the
stellar envelope, some fraction of this energy must be
transferred to the outer layers of the star by some effi-
cient and rapid mechanism. Though convection both
inside and outside the neutrinosphere can increase the
transport of energy to the shock front, certain condi-
tions are necessary for the convection to be realized.
For example, the characteristic time for the develop-
ment of convection should be less than the charac-
teristic times for accretion and neutrino transport. In
addition, convection requires constant feeding, similar
to the case of entropy convection inside the protoneu-
tron star.

2. NEW MECHANISM OF SUPERNOVAE
EXPLOSION

2.1. Formulation

A more realistic mechanism could be associated
with the action of large-scale hydrodynamical insta-
bilities; these are due, for example, to rotation or
the magnetic field, are manifest at small character-
istic times (of order 10−3 − 10−1 s), and can provide
the powerful ejection of a flux of neutrino radiation.
It was shown in [5] that, as a result of the evolution
of the supernova precursor, a rapidly rotating pro-
toneutron star forms, which subsequently separates
into two components due to instabilities, forming a
close binary. Of course, this process is accompanied
by the release of a large number of neutrinos that
were initially bound within the protoneutron star [6].
In the magneto-rotational supernova-explosion mech-
anism proposed in [7] [8], the energy of the shock wave
is provided by rotational energy extracted via twisting
of the magnetic lines of force.

There is another interesting possible mechanism for
the powerful ejection of neutrino radiation [9], asso-
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ciated with hydrodynamical motions in the protoneu-
tron star. This model is essentially based on the pi-
oneering work [10] that considers the development of
convective instability in a gravitating gaseous sphere
(star). The main idea is based on the similarity of the
time evolution of meridional cross sections of isoen-
tropic surfaces and of normal cross sections of mag-
netic surfaces during the development of helical MHD
instability in a plasma cylinder [11]. As in the case of
plasma instability, it was found that large-scale inho-
mogeneities grow most rapidly. Chandrasekhar and
Lebovitz came to the similar conclusion by investi-
gation of convective instability of gaseous masses in
a star [12]. It is interesting that such large-scale in-
stabilities have been observed in experiments on con-
trolled nuclear fusion. Analytical estimates and cal-
culations for the two-dimensional problem indicated
that the hot inner layers are carried toward the stellar
surface on a time scale τ ∼ R/vsound.

Three-dimensional calculations of the development
of hydrodynamical instability in a protoneutron star
with an excess central entropy were carried out in [9].
Large-scale entropy inhomogeneities developed over
4 ms, and then moved away from the central region of
the star, whose characteristic size is ∼ 20 km, gener-
ating a formation reminiscent of the mushroom cloud
of a nuclear explosion in the Earth’s atmosphere. The
characteristic time for the motion of a single such bub-
ble toward the surface of the protoneutron star is 1ms,
providing a mean velocity of c/150. Six bubbles with
masses of 10−2M� each rose symmetrically from the
center along perpendiculars to the edges of a cube.
The intensity of the neutrino radiation during this
ejection was 5 × 1052 erg/s. The fraction of energy
absorbed per gram of matter in the shock extending
from the neutrino emission was 2.3×1024 erg g−1 s−1,
which is comparable to the neutrino losses from the
shock front. It is important to note, that process of
nonequilibrium neutronization leads to occurrence of
neutrino with high average energy 80-150 MeV. Our
calculation shown, that means emission neutrino is
equal 50-80 Mev. These estimates of the energy of
the neutrino emission arriving at the shock wave front
as the bubble rise toward the neutrinosphere suggest
that large-scale convection is capable of supporting a
diverging shock wave, leading to the ejection of the
supernova envelope.

2.2. Initial state of the problem and
numerical technique

When calculating the distributions of density arid
temperature inside the protoneutron star, we took
the central density and temperature to be ρc = 2 ×
1014g/cm3 and Tc = 1011K. We applied the equa-
tion of state from [13], in the form of a tabulated de-
pendence of the pressure on density and entropy. We

specified the relative number density of electrons to be
constant and equal to 0.35. We specified a Gaussian
excess entropy distribution at the initial time near the
center (ρ0 = 0), S = S0+(S′−S0)exp{−(r−r0)2/b2},
assumed to be due to some nonequilibrium process.
We determined the initial entropy S0 from the central
temperature and density to be 1.6327 kB/nucleon.
The maximum entropy in the center S′ = 2.8, and
the parameter b = 0.02 was chosen such that the size
of the region of the entropy perturbation was one-fifth
of the total size of the computational region.

The hydrodynamical equations that we used to
model processes inside the protoneutron star in the
three-dimensional case have the form

ρ
dv

dt
= −gradP −

ρ GM

r3
r, (1)

dρ

dt
+ ρ div v = 0, (2)

dS

dt
= 0. (3)

Here, ρ is density, v the velocity of the matter, P
pressure and S entropy.

The hydrodynamic equations was written in conser-
vative form

∂ ~U

∂t
+

∂ ~F

∂x
+

∂ ~G

∂y
+

∂ ~H

∂z
= ~S

The numerical method which we used was an
explicit Godunov-type conservative TVD difference
scheme with second order by space and time

Un+1

i,j,k = Un
i,j,k − ∆t(L(Un

i,j,k) + Si,j,k),

where ∆t = tn+1 − tn and L (in one direction) is

L(Ui,j,k) =
F̃i+1/2,j,k − F̃i−1/2,j,k

∆xi

Fluxes along each direction, for example x, was de-
fined by local-characteristic method [14] as follows

F̃i+1/2,j,k =
1

2

[

Fi,j,k + Fi+1,j,k + Ri+1/2Wi+1/2

]

The one step of time integration is defined by
Runge-Kutta method [15].
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For higher resolution in the numerical modelling we
have used three level of nested rectangular grids with
128 cells in each directions. Solution results for above
described problem were obtained due to the NORMA
system application [16] on the system with distributed
memory multiprocesseres ( two Alpha 21264/667 MHz
in node, memory 1 Gb in node, SAN Myrinet to com-
munication, 384 nodes). Norma program was com-
piled in Fortran with MPI library. The speedup of
computation in 122.8 times on 128 processors were
obtained during solution process.

2.3. Results of hydrodynamical
simulation.

At the initial time, we obtained an equilibrium con-
figuration allowing for the star’s rotation using the
iterative method presented in [17]. modified for an
arbitrary equation of state. We performed calcula-
tions for two cases. The first had no rotation, which
we used to test the resulting equilibrium of the star.
The second had slow, rigid-body rotation, with the
ratio of the rotational kinetic energy T and the grav-
itational energy |W | chosen to be T/|W | = 0.01. We
calculated the kinetic and potential energies for in-
tegrated quantities derived using the density profile
obtained in the computations. The rotational period
of the star, which corresponds to the ratio of the ki-
netic and potential energies, 1%, was 14ms. We chose
the coordinate system such that the plane of rotation
coincided with the Oxy axis. This means that the
angular-rotation vector of the star has only one com-
ponent, Ωz = Ω = const.

Results of hydrodynamics modelling are shown
in Fig.1. In contrast to the models considered
in [9] [18], here, two bubbles form after ∼ 3ms, and be-
come elongated in opposite directions along the rota-
tion axis. Four additional bubbles arise slightly later,
after ∼ 5 ms, in the plane of rotation of the protoneu-
tron star. This entropy distribution disrupts the sym-
metry of the picture obtained in [18]. The bubbles on
the rotation axis are the first to tear away from the
hot core and float up toward the surface. This occurs
because the density changes more rapidly along the
rotation axis. Cooler material sinks toward the center
of the protoneutron star in the space between these
two bubbles. The bubbles in the plane of rotation
break away form the hot core somewhat later, and
also rise toward the surface. Our computations indi-
cate that, after the first bubbles, additional smaller
bubbles form, and also begin to float toward the sur-
face.

Figure 1: Levels of entropy and fields of velocity in
meridional and equatorial planes are shown.

3.1. Formulation

Consider a bubble corresponding to a bounded re-
gion in the central part of a star about 6 × 105cm in
size, with a density of about 2×1014g/cm3 and adopt
the time dependence for the bubble density obtained
from numerical simulation. We assume that, at the
initial time, the bubble is composed of iron nuclei (A
= 56, Z = 26) and free ultrarelativistic electrons. Neu-
trino interact with matter via both direct and inverse
beta processes and elastic interactions with electrons
and nuclei.

We emphasize that, due to the large difference be-
tween the masses of electrons and nuclei, neutrinos
lose substantially greater energy in collisions with
electrons. Since our treatment will be limited to a uni-
form and isotropic approximation for the neutrino dis-
tribution function (whereas scattering by nuclei con-
tributes appreciably only to the anisotropic compo-
nent of the distribution function), we can neglect scat-
tering by nuclei in the collision integral. However,
since scattering by nuclei appreciably affects the rate
of escape of neutrinos through the bubble boundary,
we will taken it into account in this process. We ne-
glect all other processes involving neutrinos. In con-
trast to [19], we shall take into account the fact that
there is also some distribution of neutrinos outside
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the bubble. Therefore, neutrinos can both leave and
enter the region under consideration. The electron
distribution function will be interpolated by a Fermi
step function, which is obviously applicable only when
EF � 1.5kT (i.e., when the Fermi energy of the elec-
trons is considerably greater than their thermal en-
ergy).

3.2. Mathematical model

In a uniform, isotropic approximation, the kinetic
equation describing the evolution of the neutrino dis-
tribution in a bounded region whose characteristic size
d, density, and partial concentrations of components
vary with time can be written in the form

∂f(p, t)

∂t
=

4π
[

(1 − f(p, t))

∞
∫

0

dp′(p′)2f(p′, t)Kin(p, p′, t)−

f(p, t)

∞
∫

0

dp′(p′)2(1 − f(p′, t))Kout(p, p′, t)
]

+

dρ(t)

ρ(t)dt
f(p, t) −

c

d(t)[1 + γ(p, t)]
(f(p, t) − fg(p, pg))+

(1 − f(p, t))S(p, t) − f(p, t)Y (p, t). (4)

Here, the functions Kin(p, p′, t) and Kout(p, p′, t)
depend on details of the process of neutrino scatter-
ing by electrons, and S(p, t) and Y (p, t) are sources
and sinks of neutrinos, determined by the direct and
inverse beta processes. The term containing the loga-
rithmic derivative of the density is responsible for vari-
ations in the neutrino distribution due to the changing
dimensions of the region where the neutrinos are con-
centrated. The last term describes neutrino escape
through the boundary. (The value γ = 0 corresponds
to the case of free propagation.) We normalized the
distribution function as follows:

n(t) = 4π(2π})−3

∞
∫

0

dp′(p′)2f(p′, t). (5)

This equation for the neutrino distribution function
must be supplemented by an equation describing evo-
lution of the electron number density

dne(t)

dt
=

4π

∞
∫

0

dp p2[−(1 − f(p, t))S(p, t) + f(p, t)Y (p, t)]

+
dρ

ρ dt
ne(t), (6)

and also by a relation between the densities of the elec-
trons and neutrons, on the one hand, and the density
of the medium, on the other:

mn

[

nn(t) +
A

Z
ne(t)

]

= ρ(t). (7)

In deriving (7), we have assumed that electrons
make a negligible contribution to the density of the
medium, and that the medium is electrically neutral.

We used the following expressions for γ in the sim-
ulations:

γ(x, t) =

4π

∞
∫

0

dyy2(1 − f(y, t))[Kout(x, y, t) + Kin(x, y, t)],

(8)

and

γ(x, t) =

4π

∞
∫

0

dyy2[(1 − f(y, t))Kout(x, y, t) + Kin(x, y, t)].

(9)

Where we introduced notations x = p/pF (0), y =
p ′/pF (0).

We solved the system of equations numerically on a
uniform grid in x containing 101 points. The integrals
were approximated by trapezoidal formulas. The time
evolution was described by an implicit, second-order,
two-layer scheme. We solved the implicit difference
system using a successive-approximation method.

The time dependence of the bubble density com-
puted in this way and used in the numerical simula-
tions is described well by the formula

ρ(t) =
167.14

1 + 0.3 exp (t − 5.5)
. (10)

3.3. Results of neutrino transport
simulation

The results of our numerical solution presented in
Figs. 2-5 for two cases: in the first (Figs. 2, 3), we
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used formula (8) for the function γ(x, t), and, in the
second (Figs. 4, 5), we used formula (9).

Figure 2: Time dependence of the number density of
neutrinos (marked curve) and electrons (unmarked
curve).

Figure 3: Time dependence of the average energies of the
neutrinos (marked curve) and electrons (unmarked
curve).

The neutrino distribution function outside the spec-
ified region was taken to be zero in both cases. The
number of neutrinos emitted per unit volume per unit
time in an interval dp is given in our model by the
formula

dI(p, t) =

4πc

d(t)[1 + γ(p, t)](2π})3
[f(p, t) − fg(p, pg)]p

2dp =

ne(0)I(x, t)dx. (11)

Although the difference between the two cases from
the viewpoint of physical conditions seems negligible,
the results of the numerical simulations are radically
different. In the first case, the bubble is optically thin
to the neutrino radiation from the very onset of the
process. The emission maximum corresponds to time
t ≈ 0.5ms, which is roughly equal to the characteristic
time for the action of the source. The transparency
of the bubble results from the substantial decrease in
neutrino scattering due to the factor (1 − f) in (8),
when the neutrino distribution function is close to a
Fermi step function.

Figure 4: Time dependence of the number density of
neutrinos (marked curve) and electrons (unmarked
curve).

However, under real conditions, the distribution
function can be considerably different from a Fermi
step distribution, for example, due to the heating of
the electron component by neutrino scattering pro-
cesses. Since the model we have used cannot be
applied to the case of non-zero temperature for the
medium, we simulated the influence of non-degeneracy
of the neutrino distribution on the emission by ne-
glecting the suppression factor (1 − f) when describ-
ing scattering by nuclei. Since the neutrino energy re-
mains virtually unchanged during scattering by nuclei
(as compared to scattering by electrons), this should
not affect the evolution of the neutrino distribution in
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Figure 5: Time dependence of the average energies of the
neutrinos (marked curve) and electrons (unmarked
curve).

momentum space, and should change only the optical
depth of the boundary [see (9)].

Indeed, in this case, appreciable neutrino radiation
appears only after t ≈ 10 ms, and reaches its max-
imum at t ≈ 12 ms. In accordance with (10), such
times correspond to densities that are two orders of
magnitude lower than the initial density. Therefore,
in the second case, the bubble becomes optically thin
to neutrinos only after it rises to the upper layers of
the supernova core, which are characterized by consid-
erably lower density. At earlier times, the rising bub-
ble acts as an opaque neutrino trap. In this case (Fig.
5), the mean energies of the neutrino and electron
components are equal from t ≈ 0.5 ms (the charac-
teristic time required for production of the neutrino
component by beta processes) to t ≈ 10ms (when the
medium becomes optically thin). In the first case (Fig.
3), the average neutrino energy is less than the aver-
age electron energy, due to the emission of some of the
neutrinos before the onset of the stage of ”classical”
transparency. Later, the mean neutrino energy ex-
ceeds the mean electron energy in both cases, since the
degradation of neutrinos in νe processes is substan-
tially decreased, while the Fermi energy of the elec-
trons (and, consequently, their average energy) con-
tinues to decrease as the bubble expands.

3.4. Estimates of neutrino radiation

At the initial time, the mass of matter with ex-
cess entropy (smax = 2.5) is 0.07M�. After 3.5 ms,
0.02M� of this material approaches the boundary
of the neutrino-sphere, where the density is ρ =

1011g/cm3, and becomes transparent to the neutri-
nos there. The density of these neutrinos is compa-
rable to the density of electrons with mean energy
E ∼ 60MeV . In this case, the intensity of the neu-
trino emission can be estimated as

L = (0.04M�×E)/(µmn×3.5×10−3) ∼ 4×1054erg/s,

Fraction of energy absorbed by matter per gram in
the shock wave from this neutrino radiation is

dε

dt
∼ Lσn1/ρR2 = 0.97 × 1027erg g−1 s−1,

for typical parameters ρ = 108 g/cm3, and R =
107 cm. This is much more than the neutrino losses
from the shock front: dεν/dt ∼ 6 × 1022 erg g−1 s−1

(reference [20]); i.e., the large-scale convection could
support a diverging shock wave, leading to the ejec-
tion of the supernova envelope.

The mechanism we have considered here is based
on the development of large-scale hydro-dynamical in-
stability inside a rotating protoneutron star, and has
several advantages over previous models, because it
can provide a rapid (over a time ∼ 10−2 s) emission
of high-energy neutrinos, which can give the required
boost to the energy of the shock. Observations of the
central region of SN 1987A testify to the presence of
two large-scale ejections, in good agreement with our
model incorporating the effects of rotation [21]. In ad-
dition, the motion of the bubbles along the rotation
axis will be accompanied by strong mixing and the
intense formation of 56

Ni, which has been observed
during the ejection of supernova shells. Since a large
fraction of the evolution of the bubbles occurs at den-
sities ρ > 1012 g/cm3, where neutrinos move in mat-
ter in a diffusion regime, there is no need to take into
account the effects of neutrino transport on the devel-
opment of the large-scale instability. As a bubble ap-
proaches the neutrinosphere (ρ < 1012 g/cm3), these
effects become appreciable and lead to changes in the
energy and spectrum of the escaping neutrinos.
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V.M., Pis’ma ZhÉTF, 1996, vol. 64, p. 817.
[19] Suslin, V. M., Ustyugov, S. D., and Churkina,

G. P., Preprint No. 70, IPM im. M.V. Keldysha
RAN (Keldysh Institute of Applied Mathematics,
Russian Academy of Sciences, Moscow, 1998).

[20] Fowler, W., and Hoyle, F., Neutrino Processes
and Pair Formation in Massive Stars and Super-
novae, Chicago, 1965.

[21] NASA Press Release, STScI-PR-97-03.

22nd Texas Symposium on Relativistic Astrophysics at Stanford University, Dec. 13-17, 2004

2223 7


