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We present a ballistic description of the propagation of the working surface of a relativistic jet. Using simple
laws of conservation of mass and linear momentum at the working surface, we obtain a full description of the
jet flow parametrised by the initial velocity and mass injection. This analysis will soon be applied to particular
cases of time-dependent injection of mass and velocity into the jet.

1. Introduction

The apparent superluminal knots observed along
the relativistic jets of quasars and microquasars are
usually interpreted as shock waves moving through the
jet. It is not perfectly understood what is the mecha-
nism that can generate internal working surfaces that
move along an astrophysical jet, but it is generally ac-
cepted that the formation of these shocks is produced
by a variation on the ejection flow velocity of the jet
material [see for example 1, and references within].

In this work we present a full relativistic generali-
sation of the non–relativistic one dimensional dynam-
ical description of internal working surfaces made by
Contó et al. [2] that can easily be applied to the most
energetic jets associated with quasars, microquasars
and GRB’s.

2. Dynamics of relativistic working
surfaces

To follow the evolution of the working surfaces, we
consider a source ejecting material in a preferred di-
rection x with a velocity u(τ) and a mass ejection rate
ṁ(τ), both dependent on time τ .

Once the material is ejected from the source, we
assume it will flow in a free-stream fashion [see e.g.
[1]]. The formation of a working surface is studied
as the intersection of two distinct parcels of material
ejected at times τ1 = 0 and τ2 = ∆t labelled by their
flow velocities u1 = u(τ1) and u2 = u(τ2) = u1 +
α ∆t respectively (see Figure 1). If α > 0, the second
parcel will eventually reach the first parcel. At the
time τ2, the distance between the parcels is u0∆t and
thus the time tm (measured in the reference frame of
the source) when both parcels merge is given by
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Figure 1: When a fast velocity flow 2 moves over a slow
velocity flow 1, a working surface moving with velocity
vws is generated as a result of the interaction.
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where γ−2(u) := 1−u2/c2 represents the Lorentz fac-
tor of the flow with velocity u. The working surface
is formed at a distance df = u1(tm + ∆t) from the
source.

Following the non–relativistic formalism first pro-
posed by Cantó et al. [2], we assume that the work-
ing surface is thin and that there are no mass losses
within it (e.g. by sideways ejection of material [see
[3, 4]). Using the free-streaming condition, we can
then calculate the position xws of the working surface
from the downstream flow

xws = u1(t − τ1), (2)

or from the upstream flow

22nd Texas Symposium on Relativistic Astrophysics at Stanford University, Dec. 13-17, 2004

12217



xws = u2(t − τ2). (3)

On the other hand, since the flow is free–streaming,
the velocity of the working surface is given by the
velocity vws of it’s centre of mass, which is determined
by [5]

vws =
1

Mγ

∫ τ2

τ1

γ (u(t)) ṁ(t)u(t)dt, (4)

where the weighted mass Mγ ejected between times
τ1 and τ2 is

Mγ =
∫ τ2

τ1

γ (u(t)) ṁ(t)dt. (5)

With this velocity, the position of the working sur-
face is given by

xws = (t−τ2)vws+
1

Mγ

∫ τ2

τ1

γ (u(t)) ṁ(t)u(t) (t−τ2) dt.

(6)
For a given value of position xws, expressions (2),

(3) and (6) establish a relation between the times τ1

and τ2. The other is used to eliminate t. Taking τ2 as a
parameter, we can construct the position and velocity
of the working surface as a function of τ2 and calculate
relevant quantities such as the energy available on the
working surface.

To calculate the amount of energy radiated as the
working surface moves, we take into account the en-
ergy E0 the material had when it was ejected, i.e.

E0 =
∫ τ2

τ1

ṁ(τ) γ (u(τ)) c2dτ, (7)

and the energy Ews of the material inside the working
surface, which is given by

Ews = mγwsc
2, (8)

where the Lorentz factor γws of the working surface
material is given by γ−2

ws = 1 − v2
ws/c2.

If we assume now that the energy loss along the jet,
Er = E0 −Ews, is completely radiated away, then the
luminosity L = dEr/dt of the working surface given
by

L =
ṁ(τ2)c2
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(9)

where the Lorentz factors γ−2
1,2 := 1 − v2(τ1,2)/c2 and

we keep τ2 as a free parameter in this expression.

3. Conclusion

We have shown how a full relativistic solution can
be constructed to the problem of a ballistic working
surface travelling along an astrophysical jet. Our main
goal is to find analytic and numerical solutions to
equation (9) so that we can compare with actual ob-
servations of high–energy jets. This will be published
elsewhere soon.
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