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The long-range force gravity produces all unique structures in the universe. Such structures, called self gravitating systems 
(SGS), are thought to represent the basic nature of gravity. Since the gravity is long-range and unshielded, we cannot expect a 
naïve Boltzmann statistical mechanics, which is fully based on the additivity of conserved quatities such as energy and angular 
momentum. Therefore in this paper, we return to the very basic stand point and try to find out what kind of statistical 
mechanics is applicable for SGS. We especially emphasize the two properties often appear in SGS systems: the non-extensive 
property and the long-tails in various distribution functions. In order to determine which property is essential in statistical 
description of SGS, we study four kinds of statistical mechanics, possessing all the combinations of these two properties: (1) 
Boltzmann, (2) Fractal matter, (3) Renyi, and (4) Tsallis statistical mechanics. We use Akaike Information Criteria for their fair 
comparison.  We use the data of SDSS DR3 spectroscopic survey and apply the count-in-cell method. We conclude that only 
the Tsallis statistical mechanics properly describe the system. That is, both non-extensive and long-tail in distribution function 
are essential for SGS.   

 

1.  INTRODUCTION 

Large-scale non-linear structures in the Universe such 
as clusters of galaxies and voids have some universal and 
coherent properties reflecting the force gravity. The 
detail of such structures, called self gravitating systems 
(SGS), are systematically observed especially recently. 
Such large structures are apparently made mainly by 
gravity. Since the gravity is long-range unshielded force, 
SGS generally have the following unique properties:  
they have non-extensive properties, and they have no 
absolute equilibrium state, and long-tails are often 
observed in their various distribution functions. 
Therefore, of course, the ordinary Boltzmann statistical 
mechanics, fully based on the extensive property, cannot 
be applied to SGS in a naïve form. Faced upon this 
situation, we are force to reconsider the basics of 
statistical mechanics. Actually there are some 
generalizations of the formalism in statistical mechanics 
in various fields in Physics. For the moment, we would 
like to examine which basic property is essential, among 
various phenomenological theories of statistical 
mechanics, for correctly describing the universal 
properties of SGS.  

In our previous paper[1], we have tentatively explored 
the similar problem using the data set of CfAII South 
survey. Due to the smallness of the data set, we couldn’t 
conclude the definite answer. Though we have obtained 
the conclusion that the long-tail in distribution function 
is at least essential, we couldn’t sufficiently elucidate the 
non-extensive property. In this paper, we would like to 
obtain the definite answer applying the bland new data 
set of Sloan Digital Sky Survey DR3 spectroscopic 
catalog which includes enormous amount of galaxy data.  

We start our discussion from describing the count-in-
cell method, especially emphasizing on its generating 
functional. Then, using this formalism, we examine 
various statistical mechanics in comparison with 
observations.   

2. THE COUNT-IN-CELL METHOD AND 
THE GENERATING FUNCTIONAL ( )0f  

We characterize the galaxy distributions by using the 
count-in-cell method, in which the probability to find 
exactly N galaxies within the volume V ( )f N  becomes 
the central object. The most basic quantity would be the 
void probability ( )0f . This quantity has a rich 
information and all the higher quantity ( )f N  for 

1N ³ can be generated from ( )0f [2]. Actually, 
( )0f is the assembly of the co-probability that each 

galaxy is located as some particular location in space. 
The expression for the probability ( )f N  is given by  
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which we now derive in this section. In the above, n  is 
the mean number density of galaxies.  

Suppose a general statistical variable ( )xf , which is a 
field on the three-dimensional space. Most generally, the 
partition function  
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has all the information of the statistical property of 
( )xf . In the above the brackets represent the functional 

integral of the field ( )xf  (or the sum over all possible 

fluctuations=configurations ( ))xf , and ( )J x  is a 
source field which is a small probe from outside. The 
whole part of the cumulants or the connected correlation 
functions, denoted as the brackets with a suffix c, are 
defined by the above equation by some appropriate 
expansions.  

For our purpose, we now specify the field ( )xf  as 
discontinuous bare number density of galaxies:  
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Then the functional integration is reduced to the 
following multiple integration  
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since the distribution of galaxies at all the points 
{ }1 2 3 nx x x x, , , ... ,...  determines a field ( )xf . It is 
apparent that the probability of finding one galaxy within 
a small volume 3

1d x  around the space position 1x  

becomes ( ) ( )3 3
1 1 1 1P x d x x d xf= , and the joint 

probability of finding one galaxy within a small volume 
3

1d x  around the space position 1x  and the other within 
3

2d x  around 2x  would be  

( ) ( ) ( )3 3 3 3
1 2 1 2 1 2 1 2P x x d x d x x x d x d xf f, = , and so 

on.  
More useful, but complicated, quantity is the 

probability ( )0f  of finding no galaxy within a fixed 
volumeV . Suppose the volume V  is divided into small 
pieces { }1 Mv v, ..., , each of which is of order v V M= / . 
Then this void probability is expressed as  

( ) ( )( )

( ) ( )

1

2

1

0 1

exp .

M

m m
m

M

m m
m

f x v

x v O Mv

f

f

=

é ù
ê ú
ê ú
ê ú
ê ú=ê úë û

= -

= - +

Õ

å
 (5) 

In the above, the quantity ( )( )1 m mx vf- is the co-

probability that a galaxy is located around mx . Taking 
the continuous limit M ® ¥  with fixed V , and 
therefore ( ) ( )2 2O Mv O V M= / , the void probability 

simply reduces to  
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Similarly, the probability of finding one galaxy within 

a small volume 3
1d x  around the space position 1x  and 

finding no other galaxies is given by  
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In the same way, the general probability 

( )1 0NP x x, ..., ;  for finding N galaxies at around each 

N points and no other galaxies is given by  
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These quantities should be clearly distinguished from 

( )1 NP x x, ..., , which is the probability to find N 
galaxies without mentioning the existence of other 
galaxies. This probability is given by the expansion of 
the partition function [ ]Z J :  
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That is, in general,  
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On the other hand, our probability is more directly 

related with ( )1 0NP x x, ..., ; , which can be expressed 

as  
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Actually the probability of finding exactly N  galaxies 
within the volumeV  is given by  
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If we factor out the mean number density n  from the 
density field ( )xf  as ( ) ( )( )1x n xf d= + , where 
( )xd  denotes deviation from the average, then we have  
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Using this form and Eqs.(6) (12), we finally have the 
compact expression   
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which we now apply in the following arguments.  
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3. VARIOUS THEORIES OF STATISTICAL 
MECHANICS 

In this section, we apply the following four theories of 
statistical mechanics classified by (non)-extensive 
property and the long tails of the associated distribution 
function.  

 
Table1. Four models of statistical mechanics are 

compared. All the combinations of the two basic 
properties are exhaustively included.  
Theory  Extensive?  Long-tail? 
Boltzmann  Yes No 

Fractal  No No 

Renyi Yes Yes 

Tsallis No Yes 

 

3.1. Boltzmann statistical mechanics 

We first consider a simple model in which the galaxy 
distribution is supposed to obey the ordinary Boltzmann 
statistical mechanics with grand canonical ensemble. It is 
apparent that the genuine Boltzmann statistical 
mechanics is not suitable for the galaxy distributions. 
Therefore let us introduce a possible small deviation 
from it, and consider the virial parameter b  which 
measures the deviation from the dynamical-equilibrium. 
Then we have the following expression for the pressure   

(1 ).pV NT b= -                 (16) 
The distribution function of void is defined to be the 

probability of finding no galaxy in any part of the 
volume V [3],      

(1 )(0) .N bf e- -=                 (17) 
As is explained in the previous section, this is the 
generating functional of the general probability ( )f N  
the probability of finding N galaxies in the fixed volume  
V [2][1].  

3.2. Fractal model  

Motivated by the fact that various observational data 
suggest that the matter distribution in the Universe shows 
fractal nature, we investigate a simple mono-fractal 
distribution ( a  beeing the fractal dimension) model with 
the ordinary Boltzmann statistical mechanics.  
Reminding the number N nV= depends on the scale 
r in this fractal model, the void probability is given by   
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3.3. Rényi Statistical Mechanics  

Rényi statistical mechanics is a generalization of the 
ordinary Boltzmann statistical mechanics by introducing 
a new form of entropy. 
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This Rényi entropy reduces, in the limit 1q ® , to the 
ordinary Boltzmann entropy.  Because of the extensive 
property of this form, the total entropy of N galaxies is 
simply expressed as the sum of all the entropies of a 
single galaxy: 

.N galaxyS sN=       (20) 

The distribution function is given by  
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which maximizes the above Rényi entropy. This has a 
long-tail with power-law shape.  

The void probability is given by  
( ){ } 1(0) 1 1 .f q Ns -= + -      (22) 

We note that, since the effect of the change in the 
parameters can be absorbed into the change in the 
parameter q , this probability is essentially independent 

of s .  

3.4. Tsallis Statistical Mechanics   

Tsallis proposed a non-extensive entropy [4] 
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When we compose two independent systems A and B, 
the total Tsallis entropy satisfies the non-extensive 
relation: 

( )1B BA B A AS S S q S S+ = + + - ,    (24) 

as is easily shown from the above entropy form. The 
distribution function  
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maximizes the above Tsallis entropy. In the limit 1q ® , 
this expression reduces to the ordinary Boltzmann 
distribution as previously. 

Since the theory is non-extensive, the total entropy of 
N galaxies is given by 

{ }1 (1 ) 1
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N
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Using this non-extensive property, we obtain the final 
void probability as  
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4. COMPARISON WITH OBSERVATION 

We use the observational data of SDSS DR3 
spectroscopic catalog. (http://www.sdss.org/dr3) It is 
amazing that this data set includes 374,767 galaxies and 
the spectroscopic area is 4188 square degree. This is 
sufficient amount of data for us to select appropriate 
theory of statistical mechanics, as we will see soon.  

In order to cleanly apply the count-in-cell method, we 
need large extension of special volume for a single cell. 
Moreover, for the uniform data set excluding the 
boundary region of the total observation region, we use 
only the data region RA 150 - 210 degree and  DEC 45 – 
67 degree. From the magnitude-redshift diagram (Fig. 1), 
we choose the lower limit of the absolute magnitude -

37.83 and the redshift distance z < 0.16. This constructs 
a volume limited sample. K-correction is also included. 

 
Fig. 1: A diagram of absolute-magnitude v.s. 

redshift distance. The red line is the detection limit of 
the observation.  
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4.1. Boltzmann Statistical Mechanics 

If we apply the Boltzmann statistical mechanics to the 
SDSS data set, we obtain the value b=0.98 as the best fit 
for ( )0f  within this theory. This fact ( 1b » ) means the 
observation does not allow the generalization of genuine 
Boltzmann statistical mechanics toward the deviation from 
the dynamical equilibrium. We fix this b and plotted the fit 
for higher probabilities in Fig. 2.  
 
Fig.2. Various probabilities in Boltzmann statistical 
mechanics. Dots are calculated from the SDSS 
observations.  
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4.2. Fractal model 

If we apply the fractal model to SDSS data set, the 
fractal dimension a turns out to be 2.48a = . Various 
probabilities are plotted in Fig.3. 
 
Fig.3. Various probabilities in fractal model. The 
fractal dimension is 2.48a = .  
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4.3. Rényi Statistical Mechanics 

If we apply the Rényi statistical mechanics to the SDSS 
data set, we obtain the parameter value 0.97q = . as the 
best fit for ( )0f  within this theory. This fact ( 1q » ) 
means the observation does not allow the generalization of 
genuine Boltzmann statistical mechanics holding the 
additivity. We fix this q  and plotted the higher 
probabilities in Fig. 4.  
 
Fig.4. Various probabilities in Rényi statistical 
mechanics. The best parameter is 0.97q = .  
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4.4. Tsallis Statistical Mechanics  

If we apply Tsallis statistical mechanics to the SDSS 
data set, we obtain the values 1.84q = -  and 0.0081s =  
as the best fit for ( )0f  within this theory. We fix these 
parameters  and plot the higher probabilities in Fig. 5.  
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Fig.5. Various probabilities in Tsallis statistical 
mechanics. The best fit parameters are 1.84q = -  and 

0.0081s = .  
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5. COMPARISON OF MODELS USING AIC  

In the above, we have studied four kinds of statistical 
mechanics, in which the number of free parameters are 
different from each other. Despite this fact, we need a fair 
measure to choose the most appropriate theory of 
statistical mechanics to describe galaxy distributions. For 
this purpose, we introduce the Akaike Information Criteria 
(AIC)[5], in which the theory with much more number of 
parameters is imposed penalty. AIC measure is defined as   

 
10(# datapoints) (1 log 2 (variance))

2 (1 number of free parameters)

A IC p= ´ +

+ ´ +
, (28) 

and the better model has the smaller AIC measure.  
 
Fig.6. The AIC measure for various theories. We have 
used all the data ( ) ( ) ( )0 , 1 , ..., 9f f f . The bet fit is 
always the Tsallis statistical mechanics.  
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 From the result in Fig.6., it is apparent that the Tsallis 

statistical mechanics always has the smallest AIC measure, 
i.e. the most appropriate theory. Therefore we conclude 
that both the non-extensive property and the existence of 
long-tail in distribution function are essential for 
describing the distribution of galaxies.  All the other 
theories of statistical mechanics, with only a single 
property at most, have been rejected by SDSS analysis.  

The next step toward our problem would be to clarify 
the physical nature of these two properties and the 
theoretical justification of Tsallis statistical mechanics as 
well as the derived values of parameters. We would like to 
report these analysis soon in separate publications.  
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