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The cosmological perturbation theory including tachyonic condensation was presented. Both of the scalar- and
the tensor-type perturbations were considered. The power spectra based on the slow-roll inflations were derived.

1. INTRODUCTION

Cosmological perturbation theory [1] is important
to investigate the large-scale structures in the universe
and the cosmic microwave background radiation. Al-
though Einstein’s gravity theory has been succesful
to study the perturbations using the various fluids
and fields as the energy-momentum content, the rela-
tivistic gravity theories more general than Einstein’s
gravity are needed. These include variants of Kin-
stein’s gravity and more generalized forms with nat-
ural correction terms which appear in the quantum
corrections or in the attempt of unified theories like
string/M-theory program. Here we present the gener-
alized forms of gravity theories expressed as actions in
egs. (20,31,45). The classical evolution and quantum
generation processes are shown in unified forms.

We set c=1=nh.

2. EQUATION

We consider the Robertson-Walker spacetime with
the metric

ds* = — (1 4 2a) dt* — 2a3 o dtdz®

+a® (98 + 2005 + 27,015 + 2Cap ) da”da? (1)
where a(t) is the cosmic scale factor and dt = adn. «,
0B, v and ¢ are scalar-type perturbed order variables
and C,p is a (transverse-tracefree) tensor-type vari-
able. C,p3 is based on gS’g and a vertical bar indicates

a covariant derivative based on gfg We introduce

X = a (B + a¥) which is spatially gauge-invariant com-
bination. The vector-type perturbation is neglected.

The energy-momentum tensors considering an im-
perfect fluid form are

. 1
Tg == (a+op), To=—7(n+p)va,

Tg = (p+ dp) o5 + 113, (2)
where II7 is a tracefree anisotropic stress; I3 is based

on gsg An overbar indicates the background order

quantities. The entropic perturbation e is defined as

e=d0p—ciop, ¢ =p/i (3)
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The anisotropic stress is decomposed as
_ 1 1 ® ()
Haﬁ:a—2 H7a|5—§ga5AH + 11,5 (4)

The background evolution equations are

_ 8nG K .

K
H? 31— H:—47TG(u+p)+?(5)

Using Einstein’s equations and the energy and mo-
mentum conservation equations we derive following
scalar-type perturbation equations [2, 3]

2

K=3(-p+ Ha)+ oy, (©)
k? - 3K
*T@‘FHK: 747TG5,LL, (7)
k2 - 3K
R= g X IQWG%(H + p)v, (8)
X+ Hx —a—¢p=_8rGIl, (9)

. k2
k+2Hn+<3H2) a,
a

= 47G (6 + 30p) , (10)
5t + 3H (514 6p)

k
= (u+p)(k—3Ha - —v), (11)

la*(p+p] &k Sp
iy = (et ——
a*(p +p) a p+p
C2k2-3K 1

s ) (12)

The gravitational wave evolution is given as

k* 4+ 2K

o Yo o (t)e
Cg +3HCG + =205 =snGng. (13)

2.1. Fluid
Using the Field-Shepley combination [5]

K/a?

T i LN
7 an Gt p) X
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we derive [6]
_ H c2k?
4nGu+p) a?
H 2 k?
B (P | 15
— ( 2y ) , (15)
H/a © AnG(p+p)

Combining eqs. (15,16) we derive the closed form
second-order differential equations for both ® and ¢,

Hc2 {a3<u+p> {m H ( H)]}

ad(p+p) | H22 p+p
(17)

2 2
- _2F (<I>2 il H),
‘a n+p

qup H2 a . H2 :|
P (=) +87G——TI
H {a(,u—s—p) (H¢X> m w+p

2 k2
3a?

k2 2 k2
= 7C§¥@X — 47TG (6 — 32H> .

- (18)

For the tensor mode we have

1 /g \ k42K
i () +

5 Cap = 87GIY). (19)

2.2. Field

Considering an action for a minimally coupled
scalar field [7-9]

S = /d4x\/—7g

1 1 .
L(SWGR - §¢’ G — V(Gb)] ) (20)

the gravitational field equation and the equation of
motion are given as

1
Gab = 871G <¢,a¢,b - §¢7c¢,cgab - Vgab> 7(21)
¢y = V=0 (22)

We have the same equations (5-12) with the following
background and perturbed order fluid quantities

1. 1.
NE§¢2+W p55¢2—V7 (23)
= §0¢ — P>+ V400,
0p = 3¢ — ¢*a — V469,
— m=0=n". (24)
a ¢
Eq. (14) becomes
K/a?
P = — ——— . 25
Psp 1G> Px (25)
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We derive
. H Ak
b =— _Ar 26
4rGg? a? Pxo (26)
H/a 4G P>
. (Esﬁx) T H P, (27)
where
3K
A =1- (1—c§)ﬁ,
0
czzg——l——é.. (28)
M 3H¢
Combining egs. (26,27) gives
H?c? PRI . 5 k2
e met| = g (29)
éz H? /a4 e k2
H w (E¢x> :_0,24672%0 (30)

Comparing with the ideal fluid equations in egs.
(17,18) we have c2 replaced by ¢4. The c4 has the
role of wave speed of the perturbed field and the si-
multaneously excited metric; interpretation of c4 as
the wave speed is properly valid only for K = 0.

For the tensor mode, eq. (19) remains valid in the

field situation with Hg% =0.

2.3. Generalized f(¢, R) gravity
An action is [3, 4, 10-12]

1

S = §w(¢)¢7c¢,0

1
[dtav=alzte.R) -
=V(®) + Lim))-

This action includes f(R) gravity, the scalar-tensor
theory, the non-minimally coupled scalar field, the in-

duced gravity, etc. The gravitational field equation
and the equation of motion are given as

(31)

1

(m) L .
Gap = f[Ta;” +w (¢,a¢,b §¢ ¢,cgab>

1
+§ (f — RF — 2V) Gab + Ea;b
7F;aagab]v

. 1

;a ,C c 72

¢ ot 50 (w40 Pc + fro —2Vp)
:07

(32)

(33)

where F = 9L,
Equations (5-13) remain valid with the following
effective fluid quantities

1 /1 .
8rGu = o <2w¢2+

RF — f+2V

—3HF
).
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RF — f+2V

8nGp = f(§w¢ - 9 +F
+2HF), (34)
R | o
8Gop = = |wddd+ g (w,¢¢ —fot 2V¢) 0
. . k2
—3HOF + (3H +3H? — a2> oF
+<3HF7wgz.52)a+F/€ ,
1 ... 1 o
8nGop = I wede + 2 (W,qb(b +fo— 2V7¢) o¢
+0F 4 2HOF + (—H — 3H?
2k2 — 3K
A Y ) 2
3  a? )
. . . . 2.
P — (w(b2 +2F 4 2HF) o= SFr|,
seer = Lt (~wddp— 6F + H6F + Fa) |
« Fa o
. 1.1/, 1., :
8nGIL = —[ (v Vs — 365A) (6F - Fx)
~FCY), (35)
where
. K
R 6(2H2+H+a2>, (36)
k2
0R = 2[-k—4Hk + <2 —3H> !
a
k2 — 3K
+2 2 ] =du—36p (37)
Introducing
K F
®=wp—25 @ e 4 9L
_ §FX
U=p, + oF (38)

we can derive

2HF + F 4 k?

b=y a2 (39)
2F
Tar (P g} 9P T 0m g g
aF H+% 2HF + F
where
L
9 _ 2;-3FTE\ K
CA:1_ 6+ o 3
H+4 |k
F2
E F<w+23;?¢2> (41)
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Combining egs. (39,40) gives

N2 _ ‘
(H + —;}) A |ad? (w¢2 + 7321?) )
d
- - )
o (o) | (e 2) e

k2
=4~ 52, (42)

SN\ 2 :
w3 | (1) ()

HF +1F a(w¢2 3F2) H+ L

k2
,24 v. (43)

Here ¢4 can be interpreted as a wave speed of the
perturbed field as well as the simultaneously excited
metric.

For the tensor mode we have

L /g -\ Kk +2K
a3F (a FC&B) + a?

This equation is valid for general algebraic function of

f(¢; R).

Cos =0. (44)

2.4. Tachyonic generalization

Considering an action [13]
S = /d%\/ [ f(R, ¢, X)+ Ly |, (45)

where X = %¢,c¢7c, we have the gravitational field
equation and the equation of motion

1. _m 1
Ga = F[Téb Ty 5 (f = RF) gab + Flap
. 1
% agab = 5[ xbad); (46)
(fx¢©).. = fo (47)

Equations (5-13) remain valid with the following
effective fluid quantities

1 FR— .

TGy — F(f,XXJr 5 f—3HF>,
1, FR- .. .

87Gp = w(~— Lo byomp), (48)
1 1

8rGop = I —§(f7¢5¢+f,X5X)

—%052 (FxSR+ fxs0+ fxx6X)
—fx®d¢p — 3HOF

2
(3H+3H2 — k) SF + Fk
a
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+ <3HF + f,x<z52) a] ,
1(1 . .
S7Gop = |5 (f000 + fx0X) +0F + 2HOF
+< H —3H” + ]‘:;’K) 5F
3 a
ﬁmfmfz(mﬂp)a
3
0 1.1/1, . . .
8nGTy = &l | 5/x600 —0F + HOF + Fa ) ],
a 1.1 @ 1 oY T
STGIG = =[5 (v VB—B%A) (6F - F¥)
—FCg), (49)
where

X = —%(132, 6X = —¢dp+ ¢*a.  (50)

The equation of motion gives

L (@fx) +fo=0, ay

fx106+ <3H+ ;X> 66 + z—z&b
X

2
+¢ (3 —d- kx)]
12f got & (4907 x) + 6 =0T, (52)
where
O0f = fe00+ fx0X + frOR. (53)

We introduce a more generalized form

\I/, (54)

where U is the same as in eq. (38). We can derive

2HF + F Ak?

d=— : , (55)
Xfx+32 @
H+ & Fo\  Xfx+3
* oF “r g :LJFQ.FQ (56)
aF H—|—% 2HF + F
where
2
2 XfX+%
Cyp =

Xfx+2X2fxx+ 3F2

2
(- (f,X+2XfXX)+%
Xfx+ 3F2
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X _gF B g
B+ X "By 5 (57)
F Ry

Combining egs. (55,56) we have
(Xfx + 3F2) :
3 3F2 B 2 ®
a (Xf7X+ﬁ) (HJrﬁ) CZ‘
k,2
= —ch 5 ®, (59)
(r+ 4
+ 7) aF .
(XfX + 3 ) H+ 95
2 K2

N
(HJr%) ci

Xfx+3F2
HF +1F

¢ differs clearly from ¢? = p/ji. Contrary to the min-
imally coupled scalar ﬁeld and the generalized f(¢, R)
gravity theory the wave speed is non-trivial even for
K=0.

For the tensor mode, eq. (44) remains the same.

3. CLASSICAL EVOLUTION

Our basic scalar-type perturbation equations can be
written in the following forms

k‘2

S —2x1a—2\11, (61)
1 1
— (zW) = —x3®. 62
s (22¥)" = S (62)
Introducing
Z=caz = Jaxoxry, ca=+/r1T3; =29,
1
=9V 63
u=ay W, (63)
we have
2 , 1 z /vy’
=—(z =——— |- 64
v CAZ CORN 2k2 cy (z> (69

where a prime indicates a time derivative based on n
with dt = adn. Then

Z//
v+ (C%k2 - ) v
z

1 : k2
_ 2 2 2 _
— a2z {azQ (az <I>) +h @] 0, (65)
1/2)//

" 2 k2 _ (
o {CA (/z )"

a’ry [ 2% [a 5 k2
oz {aatg [22 (x2\1/)] +CAa2\II} = 0466)
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In these wave equations, c4 becomes the wave speed
of the fluctuating fluid or field and the simultaneously
excited metric.

For the tensor mode, we use

z=a\/Qi, v = 2D, (67)

with ® = C,p or hgg, then

o
U"—|— C2 k2 _ st vy
t T
2t
2

1 k
= CLQZt |:azt (azt (p) + C%G/Q(p:| =0. (68)

In the large-scale limits, with c}k%? < 2”/z and

(1/2)"/(1/z)

wien) = To=cyt+rlf ([ F)a
/*an/ }—2d(k kQ/ng,

W) = Zu=Cg [ Py

)

+J(k)i{1 + k2[/77 zi? (/n szn> dn
/ #dn / " dnyy (69)

The C' (d)-mode is relatively growing (decaying) in the
expanding phase of the background world. So, to the
leading order in the large-scale expansion the C-mode
of ® remains constant whereas the one of ¥ changes
its behavior according to the background evolution.
Ignoring the transient mode

®(k,n) = C(k). (70)

In the small-scale limits, with ¢ k% > 2”/z and
(1/2)"/(1/%), we have

v(k,n) = 20 = cvleicf‘k" + CUQe*iCAk", (71)

u(k,n) = gc—?ll
z
— ;—k(—cvleicAk" —l—cvze_ic“‘k")7 (72)
where we assumed ¢4 = constant.
In case
z o |n|?, ¢4 = constant, (73)
we have

Z// q(q_ 1) ﬁ
27

I\

3
[

=

and exact solutions

O(k,n) = [e1 (k) HLY

(cakln])
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e (k) HP (cakin))], (75)
TN ac
Wik) = =TS (Y, (bl
e (k)HS, (cakln))), (76)
where
1 1

4. QUANTUM GENERATION

The perturbed action is [8, 16]

58 = %/ (@2

1 7) 2 |a 2"y 3
= 3 v —chv v,a—&—?v dnd’x.(78)

In terms of the mode function we have [9, 14]

v/l

<I>‘”‘<I> ) dtd’z,
a

i) = Vo ler (k) S (cakln)
oo () HP (cakln]), (79)
i) = —@;,f;l [e1 () HE, (cakln)
+ea(k)H, (cakln))); (80)
where
lea(k)[ = [e1 (k) = 1. (81)

4.1. Power spectra

We evaluate the power-spectrum based on a vacuum
expectation value given by

k3 - - ,
Py(k,t) = o3 (D(x +1,0)D(X,1))vace” ETd3r
T
k3 9
= 27772|‘I>k(t)| . (82)
In the large-scale limit we have
(W)

CH 1 T (Ep\YPT o1
= seamitam (s) e

For the tensor-type perturbation we have d = C’g

and we need additional v/2 factor [15], with cz replac-
ing cy4, thus

/7 ['(1y)
%GHW I'(3/2)

C

2 crtzfa’

1/2
Pe (kn) =

(84)
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For v = 0 we we have additional 21n (cak|n|) factor.
In the super-horizon scale we identify [17]

,Pi) = 'Pq>, (85)
where
K3 .
Po(k,t) = ﬁ/<<I>(x—|—r,t)@(x,t))xe_“"rdgr
T
K3 9
= ﬁ@(/ﬁtﬂ (86)

is a power-spectrum based on the spatial averaging.
Since the growing modes of ® are conserved in the
large scale limit, the final classical power spectra of
the large-scale structure and the gravitational wave
P is the same as the Py generated from the quantum
fluctuations in the early universe.
Spectral indices are defined as

_ O0lnPy
thus
Py oc kms7L kT, (88)

Assuming the simplest vacuum state, i.e., co = 1 and
c1 = 0, etc., we have

ns—l,nT:372V:2+2q. (89)

For near Harrison-Zel’dovich spectra (ng — 1 ~ 0 =~
nr) the quadrupole anisotropy of the CMB is
(a3) = (a3)s + {a3)r

13
P¢5¢ + 7746 @PCQL;,

s
— 90
e (90)
which is valid for K = 0 = A. The ratio between two
types of perturbations is

Pcaﬁ
P<F5¢

_ (a3)r

ro = ~ 3.46

(91)

From eqgs. (83,84) we have

v—uvy v—1 = 2
= PCay =2 <M> L) CAut z (92)
Pyss 2 I'(v) cf =

Therefore, if the background evolution during the
quantum generation stage satisfies eq. (73) we can
read the power spectra using eqs. (82,79). In the
large-scale limit we have the power spectra in egs.
(83,84). It is noticeable that our results in §3 and 4
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are generally valid in our generalized gravity theories
in unified forms.
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