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Gravitational waves from isolated sources like single neutron stars or white dwarfs aren’t as much intense as comparably very 
rare events in massive double systems, but the quantity of single stars and comparably small distances to Earth make these 
sources interesting from viewpoint of gravitational wave physics. We present our results of research on gravitational radiation 
from magnetized white dwarfs and neutron stars. We compare different energy sources for oscillation: 
1)  differential rotation energy for White dwarfs, 
2)  deformation energy of configuration for White Dwarfs and Neutron Stars 
3)  energy released during glitches for Neutron stars. 
According to our estimations the most promising sources of gravitational waves should be Crab and Vela pulsars and may be 
G99-47 white dwarf. Registration of gravitational radiation from a given single source will open a new window for 
investigation of neutron stars and white dwarfs. 

 

1. INTRODUCTION 

A recent trend in modern astrophysics is the study of 
potential sources of gravitational radiation. Because 
gravitational waves are not absorbed by intervening 
matter, the observation of gravitational radiation from 
compact objects (neutron stars and white dwarfs), can 
provide additional information about the state of the matter 
and internal processes in their core. 

 
 

2. GRAVITATIONAL WAVES FROM WHITE 
DWARFS 

 

2.1. Magnetized White Dwarfs 

There are a number of gravitational radiation detectors, 
planned, under construction, and operational covering a 
wide frequency spectrum from ~10-9Hz all the way up 
to~104Hz. The coverage of the spectrum is not complete 
and the gap between space-based interferometer and 
ground-based interferometers has been proposed as a 
possible “window”, devoid of continuous foreground 
sources, through which the cosmological background of 
gravitational radiation could be seen [1]. Magnetized 
rotating white dwarfs undergoing self-similar quasi-radial 
oscillations will emit gravitational  radiation in the 
frequency range in 0.1-0.3 Hz [2]. Quasi-radial oscillations 
of rotating white dwarfs were investigated in the early 
1970’s [3,4] where the frequency spectrum of the 
fundamental oscillation mode for maximally rotating white 
dwarfs was determined. These stars are oblate due to their 
rotation and consequently they have a non-zero 
quadrupole moment. Oscillations add a time dependence 
to the quadrupole moment [5]. The oscillation is described 
by assigning each mass element a time dependent 

coordinate given by ( )txx ωηαα sin10 +=  where 

1<<η  and is a constant. Thus, the reduced quadrupole 
moment is given by:  
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αβQ  are the components of the quadrupole 

moment of the rotating oblate white dwarf in equilibrium 

and we have neglected terms of order 2η .The radiation 
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where the retarded time is crtt −=′  for a source at 
distance r . We can express the strain amplitude as [2]: 
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 We assume that permanent source of energy to feed the 
gravitational radiation is deformation energy released 
during spin-down [2]. This energy is calculated in [6]. We 
relate the power of gravitational radiation to the decrease 

in deformation energy by: 
0

gW
J β

τ
=  , where β  is 

”branching ratio” that quantifies the fraction of 
deformation energy that goes into gravitational radiation 
from fundamental mode, τ  is a spin-down time. 

Now let’s turn to determination of spin-down 
time τ . We assume that white dwarf spins-down due to 
magneto-dipole radiation torque, which occurs if the 
magnetic field is oblique [8]. Observational data for 65 
isolated white dwarfs indicates the magnetic field strength 
on the surface of these stars lies in the range ~3⋅104 to 
~109G [9]. If we define α  to be the angle between the 
magnetic and rotation axes, the spin-down rate of the 
white dwarf is given by:  
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where 3BR=µ  is the magnetic moment, B  is the 
magnetic field strength. Then the characteristic time scale 
will be:  

              
2

τ Ω=
Ω&

                                          

We calculate thermal energy losses due to magneto-
hydrodynamic mechanism [7]. 

 The expected gravitational energy flux F on earth (in  
erg.s-1.cm-2) for a population made entirely of each type of 
white dwarf is  is calculated using formula 
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where 200h pc=  and ( ) 6.15f h =  is calculated 

using Appendix A of [20]. Finally, we note that a simple 
average of the strain amplitudes in Table 3 gives 

26
0 5.7 10h −= ⋅ and an average flux of 

12 1 28.3 10 . .F erg s cm− − −= ⋅ . The flux is spread out over 

a frequency band of 1 0.12ν =  to 2 0.32Hzν = , and we 

can estimate an average strain amplitude for the galactic 
population of pulsating white dwarfs by using the angle 
and polarization averaged expression of  and averaging 

over the frequency range 2 1ν ν ν∆ = −  to obtain:  
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which gives 25
0 7.94 10aveh −= ⋅ .  

 

Table 1: Gravitational waves from Differentially Rotating 
White Dwarfs(WD)  

 Name of   WD β  h0 F 
PG 1031+234 0.00184  2.58⋅10-28 1.13⋅10-15 
EUVE J0317-855 0.90727 9.69⋅10-26 6.04⋅10-11 
PG 1015+015 0.16853  3.81⋅10-28 1.93⋅10-15 
Feige 7 0.80759 1.47⋅10-26 3.96⋅10-13 
G99-47 0.99484 3.45⋅10-25 5.84⋅10-12 
KPD 0253+5052 0.50833 2.06⋅10-28 2.33⋅10-16 
PG 1312+098 0.41490 9.38⋅10-29 1.56⋅10-17 
G217-037 0.99999 8.97⋅10-29 8.19⋅10-19 
 

2.2. Differentially Rotating White Dwarfs 

Now lets consider the differential rotation energy of the 
white dwarf as providing the energy to drive the 
oscillations. We presume that at birth the white dwarf was 
rotating differentially, with the angular velocity a function 
of the radius. Due to friction, the configuration will relax 
to uniform rotation after some time. The difference 
between the energies of the star in these two states we call 

the differential rotation energy. To describe a differentially 
rotating stellar configuration, one should give both the 
density distribution and the angular momentum 
distribution inside the star. Following Ostriker and Mark 
[10], we change to cylindrical coordinates where, 
according to the Poincare theorem, the angular momentum 
distribution depends only on the Lagrangian cylindrical 
mass u . This is the fraction of the total mass M  for the 

configuration accumulated within a cylinder of radius r⊥ . 

For a star with radius R  we have in cylindrical 
coordinates, 

∫ ∫
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where ( )rρ is density distribution in spherical 
coordinate system.  

Our calculations are made for the following two 
distributions of angular momentum [10]  

 2/ 3( ) 5(1 (1 ( ) ) / 2l u u r⊥= − −                               (1) 

  0.5622 1/3( ) 4.8239 1.8744(1 ) 6.6983(1 )l u u u= + − − −           (2) 
The first distribution corresponds to rigidly rotating 

MacLoren spheroid, while the second interpolating 
formula corresponds with accuracy 1% to rigidly rotating 
polytrope with index n=1.5. If these distributions are 
applied for white dwarfs consisting of ultrarelativistic 
electronic gas where the density distribution is described 
by Line-Emden function of index 3, then they may 
correspond to strong differential rotation [10].  

 One can easily check that 
1

0

( ) 1l u du =∫  for both cases. 

The available energy of differential rotation is equal to 
difference of rotating energy of  differentially rotating star 

( drE ) and rotating energy of uniformly rotating 

star( 2
0 / 2urE I= Ω ). I is moment of inertia of the star, 0Ω  

will be the angular velocity of uniformly rotating star if 

friction is zero. 0 constΩ =   throughout the star as 

differential rotation  had already dumped.  
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where ( )r⊥Ω  is  angular velocity versus cylindrical radius.  

Angular velocity for each infinitesimally thin cylinder of 

radius r⊥ , mass M du⋅   and angular momentum 

( )L l u du⋅ ⋅ equals to  
Angular velocities of differential rotation is given by 

2/ 3 2
0( ) 5 (1 (1 ( ) ) / 2r I u r Mr⊥ ⊥ ⊥Ω = Ω − −               

0.56 1/ 3 2
0( ) (4.82 1.87(1 ( )) 6.70(1 ( )) ) /r I u r u r Mr⊥ ⊥ ⊥ ⊥Ω = Ω + − − −    

where 0Ω  is the final angular velocity of white dwarf 

that is rotating uniformly. We consider 0Ω  to be equal   

kΩ  Keplerian angular velocity when there is an outflow 
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of matter from equator of the star. For the same white 
dwarfs that were considered in 2.1, if driving energy of 
oscillations will be differential rotation we shall have 
gravitational waves described in Table 2 
 

Table 2: Gravitational waves from Differentially Rotating 
White Dwarfs  
 White Dwarf 
 

τ  
(Gyr) 

ho 
for dist. 1  

ho 
for dist.2 

PG 1031+234 2,2 1.39E-27 1.14E-27 
EUVE J0317-855 0,1 5.86E-26 4.72E-26 
PG 1015+015 0,5 4.39E-27 3.56E-27 
Feige 7 11,8 3.63E-27 3.00E-27 
G99-47 11,8 4.89E-26 4.04E-26 
KPD 0253+5052 2,2 2.18E-27 1.79E-27 
PG 1312+098 2,2 2.68E-27 2.20E-27 
G217-037 2,2 3.05E-26 2.50E-26 
Averege  1.9E-26 1.6E-26 

The average from the whole population of white dwarfs, 
if all were rotating differentially will be  hoave=2.0116E-25  
 

 

2.3. White Dwarfs with rough surfaces 

A white dwarf rotating at a maximal angular velocity can 
take a form of a triaxial ellipsoid due to the rotation and 
the presence of mountains on its surface. Such object emits 
gravitational waves at a frequency of 2Ω, where Ω is the 
angular velocity of rotation. The gravitation radiation 
power of the WD with rough surface is following: 

2 2 6
0 35

32

5

G
J I

c
ε= Ω                 (3) 

where I3 is the moment of inertia around z axes, ε – 
ellipticity [8,9]. We find also the expression for 
gravitational wave amplitude for a terrestrial observer at 
the distance r from the WD: 

0
0 3

2.51 J G
h

r c
=

Ω
                 (4) 

We suppose that the source of gravitational radiation is the 
kinetic energy of rotation of the star, i.e. the WD spins-
down due to reaction of radiation. In this case we find 
characteristic spin-down time for the WD by gravitational 
radiation, which is  

5

0 2 4
3
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c

GI
τ

ε
Ω= =

ΩΩ&
             (5)  

If 0τ  turns out to be on the order of lifetime of the WD 

(the age of Universe), then a WD with a rough surface will 
emit gravitational waves until now.  
As we see from expressions (3) and (4), the basic 
characteristics of the gravitational radiation, such as the 
intensity and wave amplitude, depend on the ellipticity ε. 
In order to estimate this quantity, we have to know the 

characteristic scales of the mountains on the surface of a 
WD. The maximum height of a mountain that can support 
its own weight in the gravitational field of a white dwarf 
can be estimated to be [12,13] 

12
1/310

H cm
g

ρ=                           (6) 

After this, we obtain an expression for the ellipticity of the 
form ε=H/a, a is the equatorial radius of the star, which 
we shall use below for estimating the gravitational 
radiation intensity and gravitational wave amplitude. For 

example, for a WD with a central density cρ =2⋅107g/cm3 

from (6) we find integral parameters of the star: mass 
M=MΘ, radius a=7.3⋅103km, moment of inertia 
I3=8.9⋅1049 g.cm2, and maximal rotation speed Ωmax=0.48s-

1. Using these data, from (6) we get that H=0.19 km and as 
follows from (3) and (4) J0=1030 erg/s, and h0=10-24. In this 

way for extremely dense WD with cρ =2.6⋅109g/cm3 we 

find that J0=3.7⋅1031 erg/s, and h0=10-24 [12]. These 
calculations show that gravitational waves from rapidly 
rotating white dwarfs have quite high amplitudes and can 
be distinguished from the cosmic background by the new 
generations of detectors. Rapidly rotating white dwarfs are 
entirely possible, since the characteristic spin-down times 
due to gravitational radiation, as it follows from (5), are on 
the order of 1011 years, which is on the order of  the age of  
the universe. Thus, if a star had an angular velocity close 
to maximal when it was born, it would have a fairly high 
angular velocity in our time and our calculations would 
remain valid. 
 
 

3. GRAVITATIONAL WAVES FROM 
NEUTRON STARS 

 
We consider undamped, self-similar quasiradial 

pulsations of a rotating neutron star consisting of a real 
baryon gas as a source of gravitational radiation.  

Another mechanism for generating gravitational 
radiation can be the precession of the neutron star [14,15] 
in which the symmetry axis rotates about the angular 
momentum vector. This kind of precession was used to 
explain the fluctuations of the angular velocity of the Crab 
and Vela pulsars. Observational data from pulsar PSRB 
1828-11 supports the existence of precession [16]. It has 
also been proposed that the recently discovered pulsar in 
the remnant of supernova 1987a is spinning down due to 
the emission of gravitational radiation caused by the free 
precession of the star [17]. However, as it was shown in 
[18] gravitational waves from precession of isolated 
neutron stars should be smaller then homax=10-30. 

3.1. Oscillating Neutron Stars 

One possible source of energy is the deformation energy 
of the neutron star. For rotating neutron stars, the surfaces 
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of constant density are rotating elipsoids. During the spin-
down, these surfaces tend towards sphericity. Because the 
crust is a crystalline solid, the process of spin-down will 
be accompanied by starquakes which will relieve the stress 
built up in the core and drive quasi-radial oscillations. We 
propose that part of the deformation energy is converted to 
gravitational radiation in this process. 
Let us take a model of a neutron star with a central density 

cρ  = 1.14⋅1015
 g/cm3

 and a mass M = 1.4Mo . This model 

[3] has the following characteristics:  

kΩ  ≈ 8.4⋅103s-1and ( )defW Ω ≈ 1.8⋅1053
 erg. We find the 

gravitational radiation intensity to be J0 ≈ 3.9 ⋅1037 erg/s. 
We bring maximally possible values for parameters of 
gravitational waves from Crab and Vela pulsars in Table 3. 
For the neutron star model we have chosen, the oscillation 
frequency is ω ≈ 5⋅10 khz [3,4]. In reality branching ratio 
will be about 0.01 or less that will result in coefficient β    

for strain amplitudes. 

Table 3: Gravitational wave Maximal parameters from 
oscillating Neutron Stars(branching ratio β =1)  

Neutron 
Star 

r 
distance 

τ (Gyr) ho 
 

F 
 

  Crab 2.5kpc  2.27E-6 9.20E-25 4.11E-4 
Vella 0.3kpc  2.22E-5 9.04E-25 3.97E-4 

 

3.2. Gravitational Waves from Glitches 

Glitches (jumps) and fluctuations on the order of  
≈Ω∆Ω / 10-6 ÷10-9

are superimposed on the 
irregular variation in the angular velocity. The derivative 
of the angular velocity also experiences relative changes 

on the order of ≈ΩΩ∆ && / 10-2 ÷10-4
. In the following 

we assume that one of the possible sources for generating 
and maintaining the quasiradial oscillations may be the 
glitches and fluctuations in the star’s angular velocity. It 
can be assumed that part of the rotational energy is 
transferred to the crust of a neutron star during these 
irregular changes in the angular velocity through the 
excitation of harmonic oscillations. The energy transferred 
to the crust is subsequently removed by gravitational 
radiation. The energy involved in the acceleration of a 
neutron star is 

ΩΩ=∆ ∆IW  
where Ω is the angular rotation velocity, ∆Ω is the change 
in it, and I is the moment of inertia of the star. The power 
transferred to the star’s crust is given by 

Ω
Ω∆ΩΩ=ΩΩ∆=∆
&

&
&&& IIW  

where W& is the steady state loss of rotational energy by 
the neutron star during its secular deceleration. 
If we assume that the energy of the quasiradial oscillations 
is entirely radiated in the form of gravitational waves, then 
we have to set 

•
∆= WJ 0  

Substituting Glitch parameters from [19]and [20] for Crab 
and Vela pulsars we come to the following results 

Table 4: Gravitational waves from Neutron Star Glitches  

Neutron 
Star 

∆Ω
Ω

&

&  ho 
 

F 
 

  Crab 5E-3 1.0E-26 3.2E-7 
Vella 1E-4 6.8E-27 7.78E-7 

Registration of Gravitational Waves from Glitches will be 
very important, because it will give a chance to measure 
experimentally the velocity of propagation of gravitational 
wave.  

4. CONCLUSIONS 

The galactic population of white dwarfs is a large 
collection of potential sources of gravitational radiation. 
Although most oscillation modes of white dwarfs lie in the 
millihertz range, quasiradial self-similar oscillations lie in 
the decihertz range. We have investigated the possible 
strength of the gravitational radiation foreground due to 
these oscillations in the galactic population. We have 
identified a possible energy source in the differential 
rotation energy which can support the oscillations for 
roughly the lifetime of the galaxy, so that we can consider 
these oscillations to be long-lived, essentially 
monochromatic sources of gravitational radiation. 
Although we have not identified a mechanism by which 
the gradual relaxation of differential rotation can actually 
drive the oscillations, we have shown that if such a 
mechanism can sustain quasi-radial oscillations with an 
amplitude comparable to observed low frequency 
oscillation, then the galactic population of white dwarfs 
can produce a stochastic foreground of comparable 
strength to the expected cosmological background in this 
frequency band. 
   Pulsars with irregular variations in their angular velocity 
are good candidates for gravitational wave observations. 
Note that the best candidate for this purpose is the Vela 
pulsar, which is being continuously monitored. 
This pulsar also differs from other pulsars in having large 
glitches in its angular momentum that occur at a high rate. 
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