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Quasi-Periodic Oscillations in Relativistic Tori
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Motivated by recent interesting work on p-mode oscillations in axisymmetric hydrodynamic black-hole tori by
Rezzolla, Zanotti, and collaborators, I explore the robustness of these oscillations by means of two and three-
dimensional relativistic hydrodynamic and MHD simulations. The primary purpose of this investigation is to
determine how the amplitudes of these oscillations are affected by the presence of known instabilities of black-
hole tori, including the Papaloizou-Pringle instability (PPI) and the magneto-rotational instability (MRI). Both
instabilities drive accretion at rates above those considered in Rezzolla’s work. The increased accretion can allow
wave energy to leak out of the torus into the hole. Furthermore, with the MRI, the presence of turbulence,
which is absent in the hydrodynamic simulations, can lead to turbulent damping (or excitation) of modes. The
current numerical results are preliminary, but suggest that the PPI and MRI both significantly damp acoustic

oscillations in tori.

1. Introduction

“Diskoseismology” [Nowak and Wagoner 1991] is a
relatively new subfield of accretion disk physics. Of-
ten diskoseismic oscillations have been overlooked as
uninteresting because, to be observable from the out-
side, they must be trapped in a particular region of
the disk or have a global pattern. For a Keplerian disk
in a Newtonian potential, there are no global modes
and relatively few trapped modes. Relativistic gravity
helps the situation somewhat by providing a richer set
of trapped modes. Nevertheless, even in general rel-
ativity, Keplerian thin disks have only a few trapped
modes, which mostly occur in very restricted regions
of the disk.

Non-Keplerian disks, on the other hand, have a
much richer set of diskoseismic modes available for
two fundamental reasons. First, in contrast to Keple-
rian disks, which in principle extend to infinity, non-
Keplerian disks can be constructed to have a finite size
and can thus act as a single resonant cavity. Second,
unlike Keplerian disks, non-Keplerian disks necessar-
ily have radial pressure gradients that can provide an
additional restoring force (along with the centrifugal
force and gravity) in support of oscillations.

In this work I focus on inertial-acoustic (p-mode) os-
cillations in finite tori. Two interesting consequences
of such oscillations have previously been identified.
First, they can cause periodic changes in the mass
quadrupole moment of the disks. For massive tori
of nearly nuclear densities, this may produce gravi-
tational radiation detectable by LIGO, especially for
sources located within our galaxy [Zanotti et al. 2003].
Such massive tori could form from the gravitational
collapse of a massive rotating star or as an interme-
diate state in a binary neutron star merger. These
oscillations may also be important in explaining quasi-
periodic oscillations (QPOs), particularly the harmon-
ically related high-frequency QPOs (HFQPOs) seen
in some black-hole candidate low-mass X-ray binaries
(LMXBs) [Rezzolla et al. 2003].

My goal here is to extend previous numerical simu-
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lations of oscillating tori [Zanotti et al. 2003, 2005] to
include magnetic fields and nonaxisymmetric pertur-
bations. I proceed in §2 by reviewing the equations of
general relativistic magnetohydrodynamics as solved
in the numerical code used in this work. The code
itself is briefly described in §3. In §4 I present the re-
sults of this study. I conclude with some final thoughts
in §5.

2. General Relativistic MHD Equations

This work uses a form of the general relativistic
MHD equations similar to De Villiers and Hawley
[2003a]. Nevertheless, it is worth explicitly writing
these equations out for clarity. In flux-conserving
form, the conservation equations for mass, internal
energy, and momentum and the induction equation
for magnetic fields are:
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where ¢ is the determinant of the 4-metric, W =
V—gu' is the relativistic boost factor, D = Wp is
the generalized fluid density, P = (I' — 1)E/W is the
fluid pressure, V¢ = u'/u' is the transport velocity,
S; = Wphu,; is the covariant momentum density, and
E = We = Wpe is the generalized internal energy
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density. There are two representations of the mag-
netic field in these equations: B* is the magnetic field
4-vector (||B||*> = g, B*B") and

B =W (B" — B°V*) (5)

is the divergence-free (B¢/0z" = 0), spatial (B° = 0)
representation of the field. The time component of the
magnetic field BY is recovered from the orthogonality
condition B*u, = 0.

These equations are evolved in a Kerr-Schild polar
coordinate system (t,r,0, @), although all of the sim-
ulations in this work assume a non-rotating (a = 0)
Schwarzschild black hole. The computational advan-
tages of the “horizon-adapted” Kerr-Schild form of
the Kerr metric are described in Papadopoulos and
Font [1998] and Font et al. [1998]. The primary ad-
vantage is that, unlike Boyer-Lindquist coordinates,
there are no singularities in the metric terms at the
event horizon. This is particularly important for nu-
merical calculations as it allows one to place the grid
boundaries inside the horizon, thus ensuring that they
are causally disconnected from the rest of the flow.

3. Numerical Method

These simulations are carried out using the numeri-
cal code Cosmos++, a massively parallel, multidimen-
sional (one, two, or three dimensions), adaptive-mesh,
magnetohydrodynamic code for evolving both New-
tonian and relativistic flows. Cosmos++ employs a
time-explicit, operator-split, finite volume discretiza-
tion method with second-order spatial accuracy. A
detailed description of Cosmos++, including test re-
sults, will be presented in an upcoming paper.

The simulations are initialized with the analytic so-
lution for an axisymmetric torus with constant spe-
cific angular momentum [. For the initialization, we
assume an isentropic equation of state P = rp',
although during the evolution, the adiabatic form
P = (I'—1)E/W is used to recover the pressure when
solving equations (2) and (3). We set I' = 4/3 and
k =0.0229 (in G = ¢ =1 units).

This work presents both two-dimensional (axisym-
metric) and three-dimensional simulations. The two-
dimensional simulations are carried out on a grid ex-
tending from 0.98rpy < 7 < Tpee and 0 < 6 < 7,
where rpy = 2GM/ ¢? is the radius of the black-hole
horizon. The three-dimensional simulations include
the full azimuthal range 0 < ¢ < 27w. We choose
T'maz 10 be about twice the initial outer radius r,,; of
the torus. In order to increase the resolution inside
the torus, we replace the radial coordinate r with a
logarithmic coordinate z; = 1 + In(r/rpp) and the
angular coordinate § with a coordinate xo satisfying
0 = xo+1 sin(222). The grid is resolved with 128128
zones in 2D, giving a radial spacing of 0.04r¢ near the
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horizon and 0.67 near the outer boundary. In the
present work, the 3D simulations are limited to 643
zones.

In the “background” regions not determined by the
initial torus solution, we initialize the gas following the
spherical Bondi accretion solution [Michel 1972]. We
fix the parameters of this solution such that the rest
mass present in the background is negligible compared
to the mass in the torus. The outer radial boundary
is held fixed with the analytic Bondi solution for all
evolved fields. The inner radial boundary uses out-
flow (V" < 0) boundary conditions. Data are shared
appropriately across angular boundaries.

4. Results

Results are presented in geometrized units (G = ¢ =
1) with units of length parameterized in terms of the
gravitational radius of the black hole, rg = GM/c?.

4.1. 2D Axisymmetric Hydro

It is instructive to begin this work by reproduc-
ing the results of a previously published axisymmet-
ric hydrodynamic simulation of an oscillating torus.
This will be useful for illustrating how p-mode oscil-
lations are generally manifested in axisymmetric hy-
drodynamic tori and facilitate easier comparison with
the subsequent MHD and non-axisymmetric results.
This is also important as a validation of the new code
used here. I choose Model (a) from Zanotti et al.
[2003] for this purpose. In this model, the specific an-
gular momentum, which is constant throughout the
torus, is /M = 3.8. The torus just fills the largest
closed equipotential surface so that the inner torus
boundary corresponds with the location of the cusp
Tin = Teusp = 4.576. The outer radius for such a torus
is Tour = 15.889. The density center of this torus is
located at reenier = 8.352; the orbital period at this
radius is t,p = 151.7. This will serve as a reference
dynamical timescale for all these simulations. To ex-
cite the resonant acoustic mode I use an initial radial
velocity kick. For convenience this velocity is set at
a small fraction (n = 0.12) of the background Bondi
inflow velocity.

I use the Lo norm of the rest mass density, defined
as ||p||> = Zfil Z;V:"l pfj, to characterized the global
oscillatory behavior of the torus. The time history and
Fourier power spectrum of this quantity are shown in
Figures 1 and 2, respectively. The power spectrum, in
particular, reveals the rich harmonic structure char-
acteristic of diskoseismic modes [Kato 2001]. Rezzolla
et al. [2003] also showed that this structure is consis-
tent with predictions of linear perturbation analysis
of vertically integrated relativistic tori.
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Figure 1: Time history of the L2 norm of the rest-mass
density. The vertical scale has been adjusted to the
initial value of ||p||2.
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Figure 2: Power spectra of the Ly norm of the rest-mass
density. The spectra have been arbitrarily normalized
such that the strongest frequency bin has a value of 100.
The frequency is set assuming a black hole mass

Mpr = 2.5Mg.

Although the p-mode of interest in this work is an
acoustic wave within the disk, the torus parameters for
this model are such that this wave periodically pushes
material over the cusp and out of the torus. This ma-
terial is accreted into the black hole on a dynamical
timescale. Therefore, one manifestation of the p-mode
in (marginally stable) tori is a periodic fluctuation in
the black-hole mass accretion rate as shown in Fig-
ure 3. The Fourier power spectrum of the accretion
history (Figure 4) reveals the same fundamental fre-
quency and first overtone as Figure 2, confirming the
connection.

4.2. 3D Hydro

I now drop the restriction of axisymmetry and con-
sider a three-dimensional hydrodynamic torus. The
concern here is that such a structure is known to be
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Figure 3: Rest mass accretion rate normalized by the
initial mass of the torus.
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Figure 4: Power spectra of the mass accretion rate. The
spectra have been arbitrarily normalized such that the
strongest frequency bin has a value of 100. The frequency
is set assuming a black hole mass Mpyr = 2.5Mg.

unstable to low-order non-axisymmetric modes (the
Papaloizou-Pringle instability or PPI). Note that this
simulation uses a slightly different initial setup than
the previous one. First, the velocity perturbation is
slightly smaller in this case (n = 0.06 instead of 0.12).
In my testing I have found that the amplitude of this
perturbation has little effect on the results, so this
difference shouldn’t be important. This simulation
also uses a different set of parameters for the back-
ground Bondi solution. These differences account for
the much larger amplitude of oscillations in the ac-
cretion rate for the three-dimensional model (Figure
3). Nevertheless, the frequency of the oscillations in
both cases is the same, indicating that the different
background treatments do not effect the behavior of
the p-mode oscillations.

It is useful for this simulation to add a diagnostic
to track the growth of the main PPI modes. We ex-
tract the m = 1 and 2 modes by computing azimuthal
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Figure 5: PPI mode growth.

density averages as [De Villiers and Hawley 2002]

27
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The power in mode m is then
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where 7,5, and 7,4, are the approximate inner and
outer edges of the disk. In Figure 5 we show the
growth of these two modes as a function of time. As
expected, there is significant mode growth for this
slender torus. Furthermore, this mode growth does
not appear to saturate before the end of the simu-
lation. Figure 6 shows the midplane density of this
model at t/t,q, = 33. Anm =1 “planet” and inflow-
ing spiral wave are both apparent.

The question of interest now is what effect this PPI
growth has on the p-mode oscillations. From Figure
3 it is clear that the PPI growth coincides with a sig-
nificant increase in the mass accretion rate, due to
the angular momentum transport of the spiral waves
generated in the torus. Despite the very significant
changes to the structure of the torus, the fundamen-
tal p-mode is able to survive at least to the end of this
simulation, as is apparent in Figure 3. However, the
power in this mode is significantly reduced and it is
smeared out in frequency space as shown in Figure 4.
The frequency broadening is probably due to changes
in the internal structure of the torus. The damping
is probably a result of leaking wave energy into the
black hole along the accretion stream.
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Figure 6: Density in the midplane of the torus. This plot
is shown using the logarithmic radial coordinate.

4.3. 2D Axisymmetric MHD

I now explore the effect of adding initially weak
poloidal magnetic field loops to the axisymmetric
torus investigated in §4.1. The presence of the
poloidal field triggers the violent growth of the
magneto-rotational instability [MRI Balbus and Haw-
ley 1991, Hawley 1991]. The MRI facilitates angular
momentum transport through magnetohydrodynamic
turbulence. Similar to §4.2, the focus here is to deter-
mine whether the p-mode oscillations seen in the 2D
hydrodynamic simulation can survive in the presence
of a known instability, in this case the MRIL.

The initial magnetic field vector potential is [De Vil-
liers and Hawley 2003a]

_ J k(p— pmin) for p > pmin
Ap = { 0 for p < pmin - (9)

The non-zero spatial magnetic field components are
then B" = —0pA4 and B? = O0rAg. These poloidal
field loops coincide with the isodensity contours of the
torus. The constant k is normalized such that initially
B = P/(||B||>/87) > 100 throughout the torus. The
parameter ppmin = 0.5% peenter 1S used to keep the field
a suitable distance inside the surface of the torus.
The presence of MRI turbulence dramatically in-
creases the mass accretion rate compared to the hy-
drodynamic torus (see Figure 3) and also redistributes
the disk material into a broader, more radially ex-
tended structure as shown in Figure 7. It is important
to note that axisymmetric MRI simulations are sus-
ceptible to a particularly violent form of the poloidal
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Figure 7: Logarithm of density for the initial and final
torus states for the 2D MHD simulation.

MRI, called the channel solution [Hawley and Balbus
1992], which can itself lead to highly episodic mass ac-
cretion [cf. De Villiers and Hawley 2003b], apparent
in Figure 3.

Comparisons of the power spectra of the Lo density
norms (Figure 2) and mass accretion rates (Figure 4)
suggest that the violent nature of the channel solution
strongly damps the p-mode oscillations. The accretion
spectrum of this simulation shows no power in the
fundamental mode or its overtones. The L, density
norm spectrum shows some power in the fundamental
mode, although the amplitude of the oscillation decays
with time, as apparent in Figure 1. It remains to be
seen if this strong damping is restricted to the onset of
the MRI or is a more general feature of these turbulent
tori.
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5. Summary

An obvious extension of this work will be to perform
3D MHD simulations. There are two potentially im-
portant differences between magnetized axisymmetric
(2D) and nonaxisymmetric (3D) tori. One is the fact
that the very violent channel solution of MRI (seen
in Figure 7) is itself susceptible to a nonaxisymmet-
ric instability that destroys its coherence [Goodman
and Xu 1994]. As a consequence, accretion from a
nonaxisymmetric torus is much less episodic than the
equivalent 2D torus [De Villiers and Hawley 2003b].
The second is that the MRI is unable to sustain it-
self through dynamo action in axisymmetry. The sus-
tained activity of the MRI in three-dimensions will
be important in assessing the importance of p-mode
oscillations in magnetized relativistic tori.

If acoustic modes are indeed strongly damped in
turbulent MRI disks, then the puzzle of QPOs in
black-hole X-ray binaries becomes more problematic.
The MRI only requires that a disk be differentially
rotating at a rate that decreases with radial distance
and that it have a weak magnetic field. Both of these
conditions are thought to be generally met in astro-
physical accretion disks. In light of this and the re-
sults presented here, it appears that p-mode oscilla-
tions may not be a viable mechanism for generating
observable QPOs in realistic accretion disks, but 3D
MHD simulations will be necessary to confirm this.

Animated movies of these results are available at
http://www.physics.ucsb.edu/~ fragile /research.html.
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