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We report application of a method for extracting gravitational waves to three-dimensional numerical simulation
on coalescing binary neutron stars. We found the extracted wave form includes the components corresponding
to the quadrupole part in the Newtonian potential of the background metric, if it is monitored at a position not
far from the central stars. We present how to eliminate it.

1. INTRODUCTION

We are constructing computer codes on three-
dimensional numerical relativity [1, 2]. At first we
used the conformal slicing condition, in which the met-
ric becomes the Schwarzschild one in the outer vac-
uum region so that if the three-metric is split into the
Schwarzschild background and the perturbed parts,
the latter can be considered as the gravitational waves
at the wave zone [3]. However, it has been found
that this slicing involves unstable modes and long-
term evolution of coalescing binary neutron star can-
not be followed [1, 4]. Then we started to construct a
new code using the maximal slicing condition. In this
slicing, the perturbed part of the three-metric includes
gauge dependent modes and therefore we need gauge-
invariant wave extraction. Recently gauge-invariant
wave extraction methods have been given as nonspher-
ical perturbations of Schwarzschild geometry [5-8]. In
this letter, we report application of a method based
on them to three-dimensional general relativistic sim-
ulation on coalescing binary neutron stars.

2. BASIC EQUATIONS

We use (3+1)-formalism of the Einstein equation
and write the line element as

ds® = —a?dt* + v;;(dz’ + B'dt)(dx? + p7dt). (1)

Outside of the star, we split the total spacetime met-
ric g,, into a Schwarzschild background and non-
spherical perturbation parts:

g =95+ h) + hl2), (2)
where gfff) is the spherically symmetric metric given

by

g\ B datdz” = —N?dt* + A%dr® + R*(d6* + sin® 0d¢?)

(3)
and hff,,) and hffu) are even-parity and odd-parity met-
ric perturbations, respectively;

he, = (4)
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where the symbol ‘x’ indicates the symmetric compo-
nents, Hy, h§, b, K, G, h§, h{, and h$ are the func-
tions of ¢ and r for each [ and m; Y}, is the spherical
harmonics, X;,,, and Wy, are given by

le, = 2()/lm,0q5 - )/lm,,czﬁ cot 9), (8)

Wim = Yim.06 — Vim0 €0t 0 — Yin, so/sin® 6. (9)

From the linearized theory about perturbations of the
Schwarzschild spacetime, the gauge invariant quanti-
ties U2 and W€ are given by [9]

WP, () = VZA(R — 2) N2 (h ; 28;) (10)

and

2(A —2) 4r(N?)2koym + Arkiim
A A+1—3N2
(11)

for the odd and even parity modes, respectively, where
A=1(1+1),

Wi (1) = =

M
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Eum = K + AG + QNZT%—G —92N?
T
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The quantities W° and U° satisfy the Regge-Wheeler
and the Zerilli equations, respectively [10]. Two inde-
pendent polarizations of gravitational waves hy and
hx are given by

(K + AG)} (13)

1
hy —ihy = —=— Z( Im (t:7) + W1 (8, 7) —2Yim,
\/QT l,m
(14)
where
1 le

oYy = —7 (Wi —1— | . 15

2 A(A—2)< ! lsme) (15)

In numerical calculations, the functions NZ2(¢,r),
A2(t,r) and R?(t,r) of the background metric are cal-
culated by performing the following integration over
a two-sphere of radius r [7]:

1 1
szfﬂ/gttd97 Azzﬂ/gﬁ“dga

1
R g/ (m n Sfjjg) 0, (16)

where d) = sin #dfd¢. The components of the metric
perturbations are

1 *
Hy(t,r) = p/gw 1m A2, (17)
1 1
1
G(t,r) AA D) R (18)
g . 290¢X7}
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1 1
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where * denotes the complex conjugate.
We need angular integrals over spheres for constant
r, such as

F(ro) = f(z,y,2)dQ = / f(ro,0,¢) sin6dode.

r=ro

(23)
If numerical simulation is performed using Cartesian
coordinate system, we need interpolation to obtain the
values of f(rg,0,¢) from f(x,y,z) at the grid points.
It is, however, not easy to fully parallelize the proce-
dure on a parallel computer with distributed memory.
We therefore rewrite Eq.(23) as the volume integral,
namely,

T = i X z r—r 3.’,U
Firo) = 15 [ e 2ol =) (24)

1 2 2
— 1 —(r—ro)*/a” 33
ilg%) Vmarg /f(x,y,z)e &z,

where r = /22 +y2 + 22. Numerical integral with
a = Ax/2 gives a good value to Eq.(24), where Ax is

the separation between grid points.

3. EXTRACTION OF GRAVITATIONAL
WAVES

We have performed numerical simulation for a coa-
lescing binary consisting of two identical neutron stars
of mass 1.5M, and evaluated the gravitational waves.
The details of our code will be shown elsewhere [11]
but it is essentially the same as Refs. [2] and [12].
The lapse function and the shift vector are deter-
mined by the maximal slicing and the pseudo-minimal
distortion conditions, respectively. We used uniform
475 x 475 x 238 Cartesian grid with Az = 1M, as-
suming the symmetry with respect to the equatorial
plane. As for an equation of state, we use the v = 2
polytropic equation of state. The initial rotational
velocity is given so that the circulation of the system
vanishes. The ADM mass of the system is 2.8M,.

Figures 1 shows the evolution of density on the
z-y plane. The stars start to coalesce at approxi-
mately ¢ = 0.5msec and an almost axisymmetric star
is formed by t = 1.8msec. Figure 2 shows the gravi-
tational wave forms rhy and rhy on the z-axis eval-
uated at r = 110,120, 130 and 140M, as functions of
the retarded time ¢ — r. Here ¢t = 0 is the initial time
of the numerical simulation. The lines of rhy x(t —r)
estimated at r = 110 ~ 140Mg, for t — r 2 0 coin-
cide with each other. Then the waves proportional
to »~1 and propagating at the speed of light are ex-
tracted. For ¢t —r < 0, however, lines of rh « (t —7)
do not coincide with each other. Then we plot r3h
as a function of ¢ in Figure 3. In this figure, all the
lines overlap each other for ¢ < 0.5msec. It means
that h4 x includes a non-wave mode proportional to
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Figure 1: Density contour on the z-y plane. Time t in
units of milliseconds and the maximum of density at each
time are shown.
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Figure 2: Plots rhy, x along z-axis at r = 110 ~ 140M¢
as a function of ¢t — r.
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Figure 3: Plots r®h x as a function of ¢.
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Figure 4: Plots r®h, » as a function of ¢ for static point
masses.

r~3. This mode corresponds to the quadrupole part

in the Newtonian potential of the background met-
ric. As a matter of fact, a static star lying off-center
produce non-zero hy and hy although no waves are
emitted. To evaluate the quantities of this mode, we
put static point masses at the same position in Fig-
ure 1 and calculate hy . Figure /reffigrwaves shows
r3hy « evaluated at r = 110 ~ 140M, as a function
of t. It indicates that the non-wave mode dominates
for small ¢t and decrease fast as the merger of stars
proceeds. For ¢t > r, when the waves emitted at t > 0
in the central region arrive at the observer, the wave
part dominate the none-wave part. Since this mode
is proportional to r—3 while the wave mode is to r 1,
the former will be anyway negligible if the waves are
monitored at a few times farther position.
Consequently h x can be expressed as the sum of
the wave part proportional to r~! for each value of
t — r and the non-wave part proportional to =3 for
each value of ¢, that is
Ft=1) GOy

r r3

h(t,r) = hy —ihy =

In order to eliminate the non-wave part G(t)/r® and
extract the wave part F(t — r)/r, we carry out the
following procedure.

e Calculate the Fourier components h,(r) of
h(t,r) for each r. From Eq. (25), h,(r) can be
written as

" E,(r) + %Gw(r), (26)

where F,, and G, are the Fourier components of
F(t) and G(t), respectively, defined by

1

F,=—
2w

F(t)e “tdt (27)
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e From the values of h,(r) in different radial co-
ordinates r; and ro, F, can be given by

r3he(ra) = T3hy(11)

F, = - .
w r%eflw’l‘g _ r%eflwrl

(29)

e By inverse Fourier transformation, we can get
the gravitational waves that do not include non-
wave modes,

hy(t,r) —ihy(t,7) = / € . F et dw. (30)

The resultant wave form is shown in Figure 5. The
curves represent the average of hy and hy calculated
at r = 110,120, --200M and twice the dispersion
20 is shown as error bars.

Here we define hy and hy as

77,\_;,_ =

(hea — hyy)  and Ty = hgy, (31)

N | =

¢~ — 0 and ¢
The pseudo-minimal distortion condi-

respectively, where h;;

1

(det(7iz)) 2. tr
tion demanding 0;(0;h;;) = 0 guarantees hy » to be
transverse-traceless if 9;h;; = 0 at t = 0. It is our
case since we assumed the initial three-metric to be
conformal flat, h;; = 0. Then they can be considered
as the gravitational waves on z-axis in the conformal
slicing, while they include gauge depe/r\ldent modes in
the maximal slicing [3]. To compare hy x with hy
for the conformal slicing as well as for the maximal
slicing, we have performed numerical simulation for a
coalescing binary of two M = 1.0Mg neutron stars.
As shown in Figure 6, they almost coincidg with each
other, while a small deviation is found in A x in the
maximal slicing. Then we found that the gauge mode
in 7l\+7>< is small even in the maximal slicing.

Finally to investigate a possibility that the excita-
tion of the quasi-normal modes can be seen by the
numerically calculated waves, we evaluated the energy
spectrum of the gravitational waves, which is given by

dEgw (e) (0) 2
2 = e (o fetof).
(32)
where \I/(I)W(T) is the Fourier transformation of
\IJ( )(t r). Figure 7 shows the energy spectrum of
the waves plotted in Figure 5. The fundamental fre-
quency of | = 2 for the Schwarzschild black hole of

mass 2.8 M, is w = 25 msec™ . A peak near this fre-
quency appears in Figure 7. Unfortunately, however,

1201

%1072 (10!\"/| pc) r

10 | 1

rh, ;) * 2o Y /\ ,\ I\ 2
sk J
rh. o *f/\v /\ /\ N AL

Figure 5: Wave forms rhy x along z-axis as a function of
t — r. The curves are averages of rh x estimated at
r =110 ~ 200Ms and error bars denote 20.
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Figure 6: The comparison hy x defined by Eq.(30)

and /}Z+,X defined by Eq.(31)) obtained with the
conformal slicing (c¢) and the maximal slicing (m).

the rotating angular frequency just when the merger of
the stars finishes is 12 ~ 15 msec™! and thus they will
radiate the waves of frequency near w = 25 msec™!.
So that more precise calculation is necessary to dis-
cuss whether this peak corresponds to the emission of
the quasi-normal mode of the formed black hole.
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Figure 7: The energy spectrum of the gravitational waves
plotted in Fig 5. The curves are averages of dE/dw
estimated at r = 110 ~ 200M and error bars denote 20.
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