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The value of the cosmological constant has a gap of order 10−120 between observations and the standard theory.
It is called the cosmological constant problem (CCP), which has been considered hard to overcome while few
ten’s of years. Recently a mechanism of diluting the cosmological constant by an extra dimensional effect has
suggested by Dvali et al. [4]. That mechanism is that the crude cosmological constant is a Planck scale and
exists in the 4 plus extra dimensional entire space, but we observe this diluted in the 4-dimensional brane
embedded. Cho and Vilenkin have studied the 3-dimensional spherically symmetric extra space to examine the
Dvali et al.’s diluting mechanism [5]. But out approach is observing the dependence of Hubble expansion rate
H on the number of extra-dimensions n. So we have extended their model to an arbitrary (4 + n)-dimensional
one, and we have found new solutions numerically to get the relation between n and H, We have concluded
that n ≥ 3 is needed to obtain H = 0 if we assume the crude cosmological constant is the Planck mass.

1. INTRODUCTION

The energy density of the Universe is composed of
the matter ΩM0 = 0.3, and the cosmological constant
ΩΛ0 = 0.7 [1]. The observed present value of the
Hubble parameter is H0 ≈ 10−33eV. These estima-
tion implies the value of the cosmological constant is
Λ4 ≈ (10−3eV)4. On the other hand, a natural value
of a constant contained in a gravitational theory is
thought the Planck mass Mp ≈ 1018GeV. Both have
a gap of order

(10−3eV)4

M4
p

= 10−120. (1)

This inconsistency is called the cosmological constant
problem (CCP) [2, 3] and still remains to be solved.

Dvali et al.[4] has suggested the mechanism of di-
luting the cosmological constant by using the extra-
dimensional effect to overcome the CCP. This mech-
anism is that the observed effective cosmological con-
stant becomes so small because whose energy is con-
sumed to bend the bulk space even if the crude one is
such large as the Planck scale. And they have intro-
duced the conjecture such that

H = M∗

(

M4
∗

Λ4

)1/(n−2)

. (2)

Where M∗ is the (4 + n)-dimensional Planck mass.
If the number of extra dimensions n is greater than
3, Hubble parameter H is monotonically decreasing
function of the cosmological constant Λ4.
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Cho and Vilenkin [5] have constructed the concrete
model that has a 3-dimensional spherically symmet-
ric extra space. In theirs model, physically accept-
able solutions have features that bulk metric doesn’t
have a singularity at finite distance from the brane.
In that paper, solutions whose asymptotic forms have
the cigar ansatz and have the infinite bulk spaces were
found. The relation between the scalar field’s energy
interpreted as the crude cosmological constant and the
brane’s expansion rate is calculated by using these so-
lutions. And it is concluded that both have a positive
correlation and can be linear fitted against the Dvali
et al.’s conjecture (2).

Our approach is to observe the relation between the
number of extra-dimensions and the brane’s expansion
rate with the energy scale fixed near the Planck mass,
and obtain the condition of vanishing the expansion
rate. So we have extended Cho and Vilenkin’s model
to the arbitrary (4 + n)-dimensional one. We have
found new solutions under the condition that the po-
sition of the singularity becomes as far as possible and
the metric doesn’t have the divergence.

We have concluded that Dvali et al.’s conjecture
(2) cannot be reproduced by using our new bulk so-
lutions in any dimension n. But we have found that
the brane’s expansion rate is a monotonically decreas-
ing function of the number of the extra dimensions n.
And the expansion rate can vanish at the specific di-
mension.

2. MODEL

In this section, the extended (4 + n)-dimensional
model is constructed.
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2.1. Space-time structure

In this model, the brane is assumed a 4-dimensional
de-Sitter apace dS

4, and the extra space is a spher-
ically symmetric n-dimensional space R ×Cr S

n−1.
Where the number of extra dimensions n is greater
than 2. The entire manifold is wrapped product of
both spaces R ×Cr S

n−1 ×B dS
4, whose metric is

ds2 = dr2 + C(r)2r2dΩ2
n−1

+ B(r)2

(

−dt2 + e2Ht
3
∑

i=1

dxi2

)

. (3)

Where the brane’s coordinate is (t, x1, x2, x3) and H
is the positive constant expansion rate. The extra
space’s coordinate is (r, θ1, . . . , θn−1) and dΩn−1 is the
metric of an n − 1 dimensional sphere S

n−1. C(r)r,
B(r) are the radius of the extra space and the warp
factor depending on r only. We adopt the Einstein-
Hilbert action for the space-time dynamics such that

SE−H =
1

2κ2

∫

d4+nx
√−gR. (4)

Where κ is the (4 + n)-dimensional gravitational con-
stant. In this paper, κ is independent of the number
of extra dimensions to make clear the effect of a di-
lution. g and R are the determinant and the Ricci
scalar of the metric (3).

2.2. Energy Momentum Tensor

The global defect in the n-dimensional spherically
symmetric space is introduced to construct the brane,
which is described by a multiplet of the scalar fields
φi with a Lagrangian density,

Sφ =

∫

d4+nx
√−g

[

−1

2
∂Aφi∂Aφi − V (φ)

]

. (5)

Where capital letters (A, . . .) and small letters (i, . . .)
run from 1 to 4 + n and from 1 to n respectively. Be-
cause we are thinking spherically symmetric solutions
only, the scalar multiplet has been assumed to have a
hedgehog configuration, φi = φ(r) · ξi/r. Where φ(r)
depends only on the radius coordinate r and ξi repre-
sent for the Cartesian coordinates of the extra space.
The potential of the scalar field V (φ) has minimum at
|φi| = φ = η such that

V (φ) =
λ

4
(φ2 − η2)2. (6)

The energy created by the scalar field is interpreted
as the crude cosmological constant existed in the en-
tire space, so φ’s vev holds about the Planck scale
η ≈ 1/κ.

2.3. Basic Equations

The Einstein equations and the EOM of the scalar
field are obtained by the action,

S = SE−H + Sφ. (7)

Independent components of the Einstein equations
and EOM of the scalar field have the forms

Gµ
µ = −1

4

(4)R

B2
+ 3

B′′

B
+ 3

(

B′

B

)2

+ 3(n − 1)

(

B′

Br
+

B′C ′

BC

)

+ (n − 1)
C ′′

C
+

(n − 2)(n − 1)

2

(

C ′

C

)2

+ n(n − 1)
C ′

Cr
+

(n − 2)(n − 1)

2

(

1

r2
− 1

C2r2

)

= κ2

[

−φ′2

2
− (n − 1)φ2

2C2r2
− λ

4

(

φ2 − η2
)2

]

, (8)

Gr
r = 6

(

B′

B

)2

+ 4(n − 1)

(

B′

Br
+

B′C ′

BC

)

+
(n − 2)(n − 1)

2

(

C ′

C

)2

+ (n − 2)(n − 1)
C ′

Cr

+
(n − 2)(n − 1)

2

(

1

r2
− 1

C2r2

)

− 1

2

(4)R

B2

= κ2

[

φ′2

2
− (n − 1)φ2

2C2r2
− λ

4
(φ2 − η2)2

]

, (9)

Gθi

θi
= −1

2

(4)R

B2
+ 4

B′′

B
+ 6

(

B′

B

)2

+ 4(n − 2)

(

B′

Br
+

B′C ′

BC

)

+ (n − 2)
C ′′

C

+
(n − 3)(n − 2)

2

(

C ′

C

)2

+ (n − 1)(n − 2)
C ′

Cr

+
(n − 3)(n − 2)

2

(

1

r2
− 1

C2r2

)

= κ2

[

−φ′2

2
− (n − 3)φ2

2C2r2
− λ

4

(

φ2 − η2
)2

]

.(10)

Here (4)R = 12H2 represents for the 4-dimensional
Ricci scalar depending on the expansion rate of the
brane. The prime denotes the differentiation with re-
spect to r. The equation of motion of the scalar field
is

φ′′ + (n − 1)

(

4

(n − 1)

B′

B
+

C ′

C
+

1

r

)

φ′

− (n − 1)
φ

C2r2
− λφ(φ2 − η2) = 0. (11)
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Eq.(9) imposes the constraint when solving eq. (8),
(10) and (11) as the second-order differential equa-
tions for B, C and φ.

3. ASYMPTOTIC SOLUTIONS

We have found asymptotic solutions which can be
written as the exact analytic forms. They were gotten
by solving eq.(8), (9), (10) and (11) analytically where
r has a large value.

3.1. H = 0 case

In case of H = 0, asymptotic solutions can be found
as follows. If n ≥ 3,

φ(∞) = η, (12)

B2(∞) = (arbitrary const.), (13)

C2(∞) = 1 − (κη)2

n − 2
, (14)

where (κη)2 ≤ n − 2. From eq. (14), the sphere S
n−1

has a solid angle deficit such that

∆Ω =
2πn/2

Γ(n/2)
· (κη)2

n − 2
. (15)

Where Γ is a gamma function. As κη approaches to√
n − 2, the deficit angle will consume the entire area.
In the previous works [5], the cigar type solutions in

n = 3 case are studied. These solutions have asymp-
totic forms

√
ληCr → constant. Exact analytic solu-

tions for arbitrary n ≥ 2 have been found such that

(κφ)2 =
2(n2 − 4) − (n − 1)(κη)2

(n + 5)
, (16)

B =
H√
ληk

sin(
√

ληkr), (17)

λη2C2r2 =
(n − 1)(n + 5)(κη)2

2(n + 2)[(κη)2 − (n − 2)]
. (18)

Where,

k =

√

n + 2

2(n + 5)2
(κη)2 − (n − 2)

κη
. (19)

3.2. H 6= 0 case

In case of H 6= 0, B(∞) is not allowed to be a
constant yet. Instead, the linear form can hold such
that

φ(∞) = η, (20)

B2(∞) =
3

n + 2
H2r2, (21)

C2(∞) = − (κη)2 − (n − 2)

n + 2
. (22)

Where (κη)2 ≥ n − 2 and C2(∞) takes a negative
value, which is meaning the sphere sector S

n−1 has a
sign (−1)n−1 for n ≥ 2.

4. NUMERICAL RESULTS

Differential equations to solve have a set of three pa-
rameters (n, κη, (κ/λ1/2)H). It is found by the numer-
ical integration that the proper relation among them
is obtained under the condition that the point of a
singularity becomes as far as possible. We call sets of
parameters this relation holds eigen values and call so-
lutions with eigen values physically proper solutions.
Solutions obtained from parameters deviated from the
eigen value have a divergence of B or C. Similar sit-
uations are considered in [5] for the cigar ansatz, but
we adopted our new solutions found numerically.

In the case of (κη)2 ≤ n − 2, non-singular solu-
tion exists when the brane is not expanding such that
H = 0. We have solved the Einstein equations and
the EOM by an numerical method with the initial
condition, B(0) = C(0) = 1, B′(0) = C ′(0) = 0 and
φ(0) = 0. The sixth condition can be determined by
the constraint (9) automatically. An example of the
solution is discussed in [5]

If the case of (κη)2 ≥ n − 2, arbitrary H including
H = 0 leads to a divergence of B or C at finite distance
from the origin and the singularity is formed. We call
this point rsing. At the specific H, the distance of sin-
gularity becomes as far as possible and has has a lo-
cal maximum, where the divergence vanishes. We call
this point rf. For example, the solution with the eigen
value (n, κη, (κ/λ1/2)H) = (3, 1.09, 0.003786056) is
shown in Fig. 1. It is noticed that the B(r) vanishes
at finite r but C(r) doesn’t diverge. Fig. 2 shows the
relations between η and H with n fixed at some val-
ues. The larger η corresponds to the larger H. This
tendency can be naturally understood like the Fried-
mann equation. Besides, each lines approach to the
point (κη, H) = (

√
n − 2, 0). Fig. 3 shows the rela-

tions between n and H with η fixed at some values.
At n = 0 in this figure, the values led from the normal
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Figure 1: This graph shows the physically proper
solution with the eigen value
(n, κη, (κ/λ1/2)H) = (3, 1.09, 0.003786056). B is
approaching to 0 at finite rf.

Figure 2: The relations between η and H with n fixed
respectively. H = 0 seems to be established at
κη =

√

n − 2.

Friedmann equation, H2 = κ2ρ/3, ρ = λη4/4 are also
indicated. This figure shows that the expansion rate
determined normally by the Friedmann equation is
suppressed as a number of extra-dimensions increases,
where H vanished at specific dimension. And these
lines connect to the (κη) ≤ n−2 case. This effect can
be considered the diluting cosmological constant.

Finally, it should be mentioned that the Dvali et

al.’s conjecture (2) is not reproduced with our solu-
tions as shown in Fig. 2.
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Figure 3: The relations between n and H. (a), (b), (c),
(d) and (e) were given by fixing
κη = 0.760, 1.15, 1.50, 1.80, 2.01 respectively. Values the
normal Friedmann equation holds are also indicated at
n = 0. As a number of extra-dimensions increase, the
expansion rate is suppressed. The end points of each
lines are (n, H) = (n, 0.01).
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