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We examine the formation and evolution of primordial black holes (PBH’s) after hybrid inflation. Our goal is
to assess the effects of various theoretical uncertainties on the extrapolation from a given inflation model to a
spectrum of primordial black hole masses. The context of our work is an examination of the possibility[1, 2]
that the dark matter is comprised of Planck-mass black hole remnants (BHR’s). As an example we focus on a
particular scenario[3, 4] in which the black holes form from quantum perturbations that were generated during
hybrid inflation. We find the correspondence between hybrid inflation parameters and the range of initial PBH
masses that would allow BHR’s to comprise the dark matter, taking account of the possible early presence of
radiation and its accretion onto the PBH’s.

1. INTRODUCTION

The main goal of this paper is to assess of the ef-
fects of various theoretical uncertainties on extrapo-
lation from a given inflation model to a spectrum of
primordial black holes. These uncertainties include
initial size of the PBH’s, efficiency of accretion of am-
bient radiation onto the PBH’s, and possible presence
of radiation due to reheating mechanisms acting prior
to PH formation. As a particular example we exam-
ine a scenario[3, 4] in which: (1) significant numbers
of PBH’s form just after an epoch of hybrid inflation,
(2) reheating of the Universe occurs primarily through
Hawking evaporation of these PBH’s to Planck scale
black hole remnants (BHR’s), and (3) the dark mat-
ter consists of these BHR’s. In this BHR dark matter
(BHRDM) scenario the problem is further simplified
because there is a fairly sharply defined character-
istic mass scale at which the PBH’s form. (BHR’s
as a dark matter candidate were first proposed by
MacGibbon[2]; other authors have also explored this
possibility[5, 6]).

The endstage of Hawking evaporation is not well
understood. However, heuristic arguments[7, 8] sug-
gest that black holes might not evaporate completely,
but instead may leave behind a stable Planck mass
remnant, and that a black hole’s temperature is given
by

TBH ≈ 1

4πM [1 +
√

1 − 1
M2 ]

. (1)

rather than the Hawking value

TBH ≈ 1
8πM

. (2)

We use Planck units: Planck’s constant h̄, the speed
of light c, Newton’s gravitational constant G, and the
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Boltzmann constant kb are all set to 1. Thus masses
are in units of Planck mass mP ≡ √

h̄c/G ≈ 2.2 ×
10−5 g (≈ 1.2× 1019 GeV), lengths in units of Planck
length lP ≡ √

Gh̄/c3 ≈ 1.6×10−33 cm, times in units
of Planck time tP ≡ √

Gh̄/c5 ≈ 5.4 × 10−44 sec, etc.
We use a hybrid inflation[9, 10] potential given by:

V (φ, ψ) = (M2−
√
λ

2
ψ2)2 +

1
2
m2φ2 +

1
2
γφ2ψ2 . (3)

The effective mass of field ψ goes from positive to
negative as φ decreases from large values. This shift
to a negative (“tachyonic”) mass for ψ occurs when

φ decreases to the critical value φc =
(

2
√

λM2

γ

)1/2

There are two inflation regimes in this model: (1) slow
rolling of φ down “trough” where φ > φc, with ψ ≈ 0,
(2) Rapid fall of ψ to ψ±, beginning when φ reaches
φc. Large perturbations occuring at the “phase tran-
sition between these two regimes later produce PBH’s
at a fairly sharply defined mass when they re-enter
the horizon.

As discussed in Ref. [11, 12], one finds two evolution
equations for the simple “PBH+radiation epoch” of a
homogeneous, isotropic, flat, Friedmann Universe:

f ′
BH +

f ′
r

ā
= 0,

f ′
BH =

α1f
2
BH

fr

ā4 − α2
f2

BH√
fBH

ā + fr

ā2

, (4)

where

α1 ≡ F · 27π

√
3
8π

√
ni, α2 ≡ g

120 · 162π

√
3

8πni
.(5)

Here ā ≡ a
ai

, a prime ′ means d/dā, and we use scaled
black hole and radiation energy densities defined by:

fBH ≡ ρBH ā
3

ni
= M , fr ≡ ρrā

4

ni
. (6)
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where ni is the initial number density of PBH’s, and
ρBH = niā

−3M is the energy density in PBH’s. Note
that fBH is also equal to the mass M of the PBH’s.
The first term in the numerator on the right hand side
of Eq.(4) represents the accretion of radiation (with
energy density ρr) onto the black holes, and the second
term repesents Hawking evaporation. Here we’ve used
the simpler result in Eq.(2), and in simulations dis-
cussed later will simply put in a cut-off at the Planck
mass at the end of evaporation. The factor g ∼ 100
gives the multiplicity of particles at the high tempera-
tures characteristic of black holes near the end of their
evaporation. In obtaining these equations we used the
high frequency (“geometrical optics”) limit[13] for the
absorption cross section of the black holes, which is
27πM2 for all relativistic particles. This limit is well-
satisfied for the situations considered in our scenarios.
However, for reasons to be discussed later, we have
also introduced into Eq. 5 an “efficiency factor” for
accretion, F .

2. PBH FORMATION

2.1. ”Standard picture”

We begin by reviewing the treatment of PBH for-
mation used in Refs. [3, 4] which is based on the
Press-Schechter[14] type of formalism put forward by
Carr[15]. Assuming spherically symmetric density
perturbations with Gaussian radial profile and rms
amplitude δ(M), and an equation of state p = wρ with
0 < w < 1, Carr argued that the probability P (m) of
a region of mass M collapsing to form a PBH is given
by

P (m) ≈ δ(M) exp
(
− w2

2δ2(M)

)
. (7)

Assuming a “hard” equation of state (in our case, p =
ρ/3) and a flat Universe the PBH’s are expected to
form with approximately the horizon mass.

The dependence of initial conditions fBH,i, fr,i (as
well as the initial number density of PBH’s ni appear-
ing in α1 and α2) upon the hybrid inflation potential
of Eq. 3 can be reduced to two parameters H∗ and
s, where H∗ ≈ √

8π/3M2 is the Hubble parameter

during inflation and s ≡ − 3
2 +

√
9
4 + 2

√
λM2

H2∗
. The

evolution of ψ during the waterfall regime is given by:

ψ(t) = ψie exp[−sH∗(t− tie)] , (8)

where the subscript “ie” denotes the end of inflation.
The number of e-foldings of inflation between the

“phase transition” near φ ∼ φc and the end of inflation
is given by

Nc ≈
[

2
sH∗

]1/s

. (9)

The PBH’s form when the fractional density per-
turbations δ occurring at the “phase transition” near
φ ∼ φc reenter the horizon. This density perturbation
is closely related to the “curvature perturbation” R
at horizon re-entry[16]:

δ ≡ δρ

ρ
=

2 + 2wreent

5 + 3wreent
R . (10)

Here p = wρ is the equation of state, and w at the
time of re-entry is denoted by wreent. We also have

R =
[
H

ψ̇
δψ

]
treent

, (11)

where treent denotes that the quantity in brackets is
to be evaluated at the time when the perturbation of
interest enters the horizon. Furthermore, the average
spectral perturbation due to quantum fluctuations is

|δψ| ∼ H(ψ)
2π

. (12)

If the Universe is approximately matter-dominated
between the end of inflation and horizon re-entry, then

Hi ≈ 2
3
e−3NcH∗ , (13)

while if it is more nearly radiation-dominated between
the end of inflation and horizon re-entry, we have

Hi ≈ 1
2
e−2NcH∗ . (14)

Regardless of where between the two extremes the
actual evolution falls, we assume that the Universe has
become radiation dominated by the time of re-entry,
i.e. wreent = 1/3.

The standard assumption is that PBH’s form with
the horizon mass. As will be discussed below, this may
be only roughly true, and changes from this are im-
portant when considering the effects of accretion onto
the PBH’s. So we introduce a factor xBH(≤ 1) which
gives the ratio of the initial PBH Schwarzschild radius
to the horizon radius H−1 at the time of formation:

fBH,i = xBHH
−1
i /2 (15)

Finally, the initial proportions of PBH’s and radia-
tion (where everything except the PBH’s falls into the
category of “radiation”) is obtained as follows. From
Eqs. 11, 12, and 8 we have R ∼ 1/s. Putting this into
Eq. 10, gives

δreent ≡ δρ

ρ
=

2 + 2wreent

5 + 3wreent

1
s

=
4
9s

. (16)

Assume the probability P (M) of formation is given by
Eq. 7, where δ(M) is given by δreent from Eq. 16. (Re-
call M is the mass inside the horizon at re-entry, and
thus approximately equal to the mass of the PBH’s
that form.) The initial proportions of PBH’s and ra-
diation is then just

y ≡ fr,i

fBH,i
=

1 − P (M)xBH

P (M)xBH
. (17)
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2.2. Uncertainties in PBH formation
threshold and initial mass

There remain significant uncertainties in both the
threshold overdensity for PBH formation and in the
size of the PBH’s that do form[17–23]. Early work by
Nadejin, Novikov, and Polnarev[20] and Novikov and
Polnarev[22] gave result that black holes form with
order 10% the horizon mass and also that threshold
δ is higher. Work by some authors[21, 23] indicates
critical phenomena in gravitational collapse, leading
to the possibility of black hole formation with signifi-
cantly less than the horizon mass. Green, et.al.[17]
concluded as the results of a study comparing the
Press-Schechter based formalism with a peaks formal-
ism that the “standard” formulation is fairly good if
the threshold is in the range 0.3 to 0.5. We do not at-
tempt to settle these uncertainties here, but note for
later use that the initial mass of the PBH’s may be at
least somewhat less than the horizon mass.

3. SIMULATION AND RESULTS

Given a choice of the hybrid inflation parameters
s,H∗, we can calculate initial values fr,i, fBH.i and
then solve Eqns. 4 for fr(a) and fBH(a) up to the time
when the PBH’s have evaporated to remnants. After
that, fr and fBH remain constant in time (note in
particular that fBH = 1). Matter-radiation equality
occurs at

āeq = fr,e . (18)

Here the subscript “eq” denotes matter-radiation
equality and the subscript “e” denotes the end of PBH
evaporation. Evolution then continues into the era
which is dominated first by dark matter and eventu-
ally, as the present time is approached, by dark energy.
We assume the dark energy behaves like a cosmologi-
cal constant, so that fde ≡ ρde

nimP
is constant in time.

(We ignore baryons, in effect just lumping them in
with the dark matter since they have the same equa-
tion of state, p ≈ 0.)

The present age of the universe is given by

t0 = teq +
∫ ā0

āeq

du√
8π
3 ni

(
fBH,e

u + fr,e

u2 + fdeu2
) . (19)

Since the influence of dark energy is negligible until
relatively late, the time of matter-radiation equality
is given by

teq = te +
∫ āeq

āe

du√
8π
3 ni

(
fBH,e

u + fr,e

u2

) . (20)

where te is the PBH evaporation time.

te < 10-10 s

10-10 s< te <10-9 s

10-9 s< te <10-8 s

10-8 s< te <10-7 s

10-7 s < te
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Figure 1: Case of no accretion, w = 0 between the end of
inflation and the time of PBH formation, and xBH = 1
(baseline case discussed in Refs. [3, 4]). The top plot
shows the line in H∗, s parameter space satisfying the
constraint that matter-radiation equality occurs at the
observed redshift (z = 3234). (Here we display H∗ in
conventional units of GeV rather than Planck units.)
The next plot covers the same region in the H∗, s plane
and shows the time te at which the evaporation of the
PBH’s to BHR’s is completed; the gray scale coding in
the latter plot is shown at the bottom of the figure.

Provided that matter-radiation equality occurs in
our simulations at the observed redshift z ≈ 3234 (and
the PBH’s do indeed complete their evaporation), the
constraint that t0 is the observationally inferred value
13.5 Gyr is also satisfied.

3.1. Baseline model

We begin by showing results for the case discussed
in Refs. [3, 4], for which accretion was not included
and to which we shall refer as the “baseline case”.

22nd Texas Symposium on Relativistic Astrophysics at Stanford University, Dec. 13-17, 2004

1107 3



13 14 15 16
Log10H*

1

1.5

2

2.5

3

3.5

4

S
.

Figure 2: Case with accretion included, w = 0 between
the end of inflation and the time of PBH formation,
xBH = 1, and F = 1. The meaning of the plot is as
described for the top plot in Figure 1. Note that the
result in this figure cannot be exactly correct, since the
PBH’s initially grow to be larger than the horizon – see
Figure 3 and discussion in text.
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Figure 3: For particular point on the line shown in
Figure 2 (s = 2.45, log10[H∗/GeV ] = 14.8), we show the
PBH radius 2fBH (solid line) and the Hubble horizon
H−1 (dashed line), both normalized by fBH,i; this is as
obtained from formulation of accretion used in Eq. 4
(with F = 1 in Eq. 5).

Thus it was assumed that (for whatever reason) the
“accretion efficiency factor” F is essentially zero. We
also assume (1) black holes form with horizon size
(xBH = 1), and (2) w ≈ 0 between the end of in-
flation and the time of PBH formation. The result
is shown in Figure 1. The top plot shows the line in
H∗, s parameter space satisfying the constraint that
matter-radiation equality occurs at the observed red-
shift (z = 3234). The next plot covers the same region
in the H∗, s plane and shows the time te at which the
evaporation of the PBH’s to BHR’s is completed; the
gray scale coding in the latter plot is shown at the
bottom of the figure. A safe criterion would be that
they have evaporated by the time of the electroweak
phase transition, expected to be around a TeV, or
10−10 sec. The actual values are typically somewhat
more than this (by one or two orders of magnitude),
but the criterion is somewhat uncertain anyway.
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Figure 4: Loci in H∗, s parameter space satisfying the
constraint that matter-radiation equality occurs at the
observed redshift (z = 3234), for xbh = 0.4, with
accretion (solid line) and without accretion (dashed line);
i.e., same type of plot as in top part of Figure 1. Other
parameters are: w = 0 between the end of inflation and
the time of PBH formation, and F = 1 for the case with
accretion.

3.2. Accretion with F = 1 and xbh = 1

In Figure 2 we include accretion in accordance with
Eq. 4 (with F = 1 in Eq. 5). There is significant
change from the case of no accretion. Closer exami-
nation shows that in this formulation, where the black
holes are assumed to form with the horizon mass (i.e.,
xbh = 1) and the accretion efficiency F = 1, the
black holes accrete essentially all the available radi-
ation background, before the scale factor grows ap-
preciably, and the early growth rate of the black holes
is faster than the growth of the horizon. This is illus-
trated in Figure 3 which shows (as a function of scale
factor a) the PBH radius (solid line) and the Hub-
ble horizon H−1 (dashed line) for the case s = 2.45,
log10[H∗/GeV ] = 14.8 (which is near the middle of
the line in Figure 2).

As is obvious from causality (and was long ago
pointed out by Zeldovich and Novikov[24]) the mass
of the PBH cannot increase faster than the amount of
mass within the sound horizon after formation, which
in turn is less than the optical horizon (exactly equal
to H−1 assuming radiation domination, and in any
case equal up to factor of order 1)

The faster-than-horizon growth indicates a break-
down of one or more of the assumptions in our formu-
lation of accretion, for example, (1) that the radiation
background remains smooth and uniform, and (2) that
the black holes form with the horizon mass.

3.3. Cases with xbh = 0.4

As was also pointed out by Zeldovich and
Novikov[24], if PBH’s form with significantly less than
the horizon mass, accretion is unimportant. To get a
limit on the possible effect of accretion in the BHRDM
scenario, we reduce xbh just enough to avoid having
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Figure 5: The PBH radius 2fBH (solid line) as a function
of scale factor a, along with the Hubble horizon H−1

(dashed line), both normalized by fBH,i, at s = 3.95,
log10[H∗/GeV ] = 13.85, for xBH = 0.4 (top plot) and
xBH = 0.41 (bottom plot).

PBH’s grow to be larger than the Hubble horizon
H−1. The required value is xbh = 0.4, and Figure 4
shows the loci in H∗, s parameter space satisfying the
constraint that matter-radiation equality occurs at the
observed redshift (z = 3234), for this case. The result
with accretion is the solid line, and for comparison
the dashed line shows the result without accretion.
The effect of accretion is greatest at larger s (upper
part of plots) because the parameter y ≡ fr,i/fBH,i is
larger, i.e. there is initially more radiation available
for accretion. In Figure 5 we illustrate the growth of
the PBH’s (solid line) and the growth of the horizon
(dashed line) for a case near the top of the solid line
in Figure 4, at s = 3.95, log10[H∗/GeV ] = 13.85. The
top plot is for xbh = 0.4; here the PBH’s gain signif-
icant mass by accretion, but never grow faster than
the horizon. The bottom plot is for xbh = 0.41; here
the PBH’s do exceed H−1 for a short time.

3.4. Reduction of accretion efficiency

The solid line in Figure4 represents only an upper
limit on the PBH growth for this x = 0.4 case, as there
is no guarantee that our accretion formulation is valid
even though the growth is not faster than the horizon.
For example, it could well be the case that the as-
sumption that the radiation background remains uni-
form is still violated in reality, i.e. the region around
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Figure 6: Loci in H∗, s parameter space satisfying the
constraint that matter-radiation equality occurs at the
observed redshift (z = 3234), for accretion with F = 0.4
(solid line) and without accretion (dashed line, same as
in Figure 1).
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Figure 7: The PBH radius 2fBH (solid line) as a function
of scale factor a, along with the Hubble horizon H−1

(dashed line), both normalized by fBH,i, at s = 3.95,
log10[H∗/GeV ] = 13.85, for F = 0.4 (top plot) and
F = 0.41 (bottom plot).

the black holes could become depleted of radiation,
making F < 1.

It is of course possible to avoid the faster-than-
horizon growth in the xbh = 1 case as well, if the
accretion efficiency is reduced. Reduction to F = 0.4
is sufficient, and results are shown in Figures 6 and 7.
(We would expect F → 1 eventually, but by that time
accretion becomes neglibible anyway.)

We note Hacyan[25] found (in a general-relativistic
treatment based on Einstein-Strauss vacuole model)
that the initial growth of PBH’s by radiation accretion
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Figure 8: Locus in H∗, s parameter space satisfying the
constraint that matter-radiation equality occurs at the
observed redshift (z = 3234), for case with no accretion
included, w = 1/3 between the end of inflation and the
time of PBH formation, and xBH = 1.

could be near the horizon rate if the initial PBH size
near horizon size, but also interpreted this result as a
generous upper limit on growth rate.

3.5. Possible additional reheating
mechanisms

The baseline case assumed that the Universe is ap-
proximately matter dominated from the end of infla-
tion until nearly the formation time of the PBH’s.
However PBH evaporation is not necessarily the only
reheating mechanism. We need not exclude the possi-
bility of additional reheating mechanism(s) that could
result in approximate radiation domination well be-
fore PBH formation. Thus we compare also a case
(Figure 8) where w = 1/3 between the end of infla-
tion and the PBH formation time. Here we assume
other parameters are as in Figure 1. For a given ini-
tial s,H∗, the w = 1/3 case gives smaller initial mass
of PBH’s than w = 0, since M ∝ 2e2Nc instead of
M ∝ 3

2e
3Nc .

4. SUMMARY AND CONCLUSIONS

We examined effects associated with early presence
of radiation upon extrapolation from hybrid inflation
parameters to a spectrum of PBH’s in the BHRDM
model. It appears that accretion can produce some
early rapid growth. This may occur even if the re-
quirement that the PBH’s not grow to be larger than
the horizon H−1 at any time is enforced by reducing
either the fraction xbh of the horizon mass going into
the initial PBH mass or by reducing the accretion ef-
ficiency F . However our results should be taken as an
upper limit on the effects of accretion, as there is no
guarantee that the efficiency factor is close to F = 1
during the early rapid-accretion phase. Both these ac-
cretion effects and possible radiation production well

before PBH formation affect the correspondence be-
tween the hybrid inflation parameters s,H∗ and initial
PBH masses, but do not seriously change the results
of the BHRDM scenario.
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