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Here we study the creation of a brane world using an instanton solution with Hartle-Hawking’s no boundary
approach. We analyze brane models with a Gauss-Bonnet term in a bulk spacetime. The curvature of 3-brane is
assumed to be closed, flat, or open. We construct instanton solutions with branes for our models, and calculate
the value of the actions to discuss the initial state of a brane universe.

1. INTRODUCTION

Although a big bang universe is very successful, it
predicts the existence of an initial singularity. To re-
solve such a difficulty, we have to search for a new
gravitation theory, such as quantum gravity. However,
we could so far not find it. As a first step toward reach-
ing it, we may consider a mini-super space and quan-
tize the isotropic and homogeneous universe, which
is the so-called quantum cosmology [1, 2]. Vilenkin
claimed that the universe is created from nothing [1].
This approach is based on the picture that the uni-
verse is spontaneously nucleated in a de Sitter space.
The mathematical description of this nucleation is
analogous to a quantum tunneling through a potential
barrier [3]. Another approach to quantum cosmol-
ogy was developed by Hartle and Hawking [2], who
proposed that the wave function of the universe is
given by a path integral over non-singular compact
Euclidean geometries, which is called a “no bound-
ary” boundary condition. Under this condition, we
consider the creation of a brane world. Then the wave
function is expected to be proportional to e−SE , where
SE is the Euclidean action.

When we discuss the early stage of the universe,
however, a unified theory of fundamental interac-
tions and particles will play a very important role.
Among such unified theories, string/M theory is the
most promising candidate, which is constructed in
higher-dimensional spacetime. Based on such higher-
dimensional theories, a new cosmological scenario has
been proposed, that is, a brane cosmology. One of the
most interesting approach was given by Randall and
Sundrum [4, 5]. They considered a pure 5-dimensional
(5D) Einstein gravity in a bulk only with a cosmolog-
ical constant. In their second model [5], it was shown
that four-dimensional gravity is recovered even in an
infinite bulk spacetime.

If we believe such a higher-dimensional cosmologi-
cal scenario, we have to invoke how such a universe
is created. In particular, because a brane structure
is highly inhomogeneous in a higher-dimensional bulk
spacetime, we may wonder how such a brane universe
is born and starts to evolve. As for creation of a brane

universe, a some work has been so far done. Garriga
and Sasaki first constructed an inflating brane instan-
ton of the Randall-Sundrum model [6]. This instanton
is obtained by gluing two spherical parts of AdS5. It
was also considered that the creation using an instan-
ton, inflation and a fluctuations during the de Sitter
phase in the model containing the quantum correction
term called a trace anomaly on the brane [7].

When we discuss such quantum effects on the
brane, we may also have to include quantum effects
in the bulk. In the higher dimensional theory, the
higher curvature correction terms should be added to
the Einstein-Hilbert action. These terms appear in
the low energy effective action of string theory via
quantum one-loop corrections. In fact the low en-
ergy effective actions of some string theories include
RABCDRABCD interactions, but this term gives rise
to a ghost. In order to resolve this problem, a ghost-
free Gauss-Bonnet combination was introduced [8].
Hence, the Gauss-bonnet term should be included
when we discuss a brane universe with some quantum
corrections.

Here we consider the creation of a brane universe
using an instanton solution in the Einstein-Gauss-
Bonnet theory [9]. We construct a brane instanton
including a Gauss-Bonnet term.

2. ACTION AND EQUATIONS OF MOTION

The Euclidean action for the brane world with a
Gauss-Bonnet term in 5D spacetime is described by
two parts: one in a bulk spacetime (M) and the other
in brane boundary hypersurfaces (∂M =

∑

i ∂Mi),
i.e.,

SE = Sbulk
E + Sbrane

E . (1)

The bulk action is given by

Sbulk
E = − 1

2κ2
5

∫

M

dx5√g [R − 2Λ + αLGB ] , (2)

where LGB = R2 − 4RABRAB + RABCDRABCD, κ2
5

is the 5D gravitational constant, Λ is a cosmologi-
cal constant, R,RAB , and RABCD are the 5D scalar
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curvature, the Ricci tensor and the Riemann tensor,
respectively, and α is a constant, which is related to
a string coupling constant. The induced 4D metric
hµν on a 3-brane is defined by hAB = gAB − nAnB ,
where nA is the spacelike unit vector field normal to
the brane hypersurface. The action of the branes is
given by the following form:

Sbrane
E = −

∑

i

∫

∂Mi

d4x
√
h

[

1

κ2
5

Lsurface(∂Mi) − λi

]

, (3)

where Lsurface = K + 2α(J − 2GρσKρσ) is a surface
term of the 5D gravitational action [10]. λi is a tension
on the i-th brane, Kµν is the extrinsic curvature of a
brane, K = Kµ

µ , and Gµν is the Einstein tensor of
the induced metric hµν . J is a trace of Jµν , which is
given by some combination of the extrinsic curvature
defined by

Jµν =
1

3
(2KKµρK

ρ
ν +KρσK

ρσKµν

−2KµρK
ρσKσν −K2Kµν

)

. (4)

The total action (SE = Sbulk
E + Sbrane

E ) gives the
field equations as

GAB + αHAB = −ΛgAB −
∑

i

λigABδ(∂Mi), (5)

where

GAB = RAB − 1

2
gABR, (6)

and

HAB = 2
[

RRAB − 2RACRC
B − 2RCDRACBD

+R CDE
A RBCDE

]

− 1

2
gABLGB . (7)

Since we are looking for an instanton solution,
we assume a highly symmetric Euclidean spacetime,
whose metric is given by

ds2E = dr2 + b(r)2γµνdx
µdxν , (8)

where γµν is a 4D metric with maximal symmetry.
This maximally symmetric 4D space is classified into
three cases by the signature of curvature, i.e., k =0
(zero), 1 (positive), or −1 (negative). It corresponds
to the curvature sign of the Friedmann universe after
creation. Since the Euclidian space must be compact
when we discuss its creation, in the case of k=0 or −1,
we have to make a space compact by identification.
Then the flat spacetime is a 4D torus, and that with
k = −1 has a more complicated topology. Although
the spacetimes are compact, we shall call them “flat”
and “open” for k = 0 and −1 as well as “closed” for
k = 1.

Figure 1: Brane instanton. The thick vertical circle at
r = ri represents the four-sphere brane at which the two
identical five-dimensional anti-de Sitter spaces are glued.

The equations of motion under the above ansatz are
given by

3

(

b′′

b
− k − b′2

b2

)

+ 12α
(k − b′2)

b3
b′′

= −Λ −
∑

i

λ̄iδ(r − ri), (9)

6
(k − b′2)

b2

{

1 + 2α
(k − b′2)

b2

}

= Λ, (10)

where the prime denotes the derivative with respect
to r and λ̄i = κ2

5λi.
By integrating the first equation for a small interval

(ri−ε, ri+ε) including a brane, we obtain the junction
condition [11] at r = ri as

[

b′

b

{

3 − 4α

(

b′2

b2
− 3k

b2

)}]±

= −λ̄i , (11)

where [ ]± denotes

[A]± = A(ri + ε) −A(ri − ε) ≡ A+ −A−. (12)

With the ansatz of Z2 symmetry, which gives the re-
lation of [A]± = 2A+ = −2A−, we obtain

b′

b

{

3 − 4α

(

b′2

b2
− 3k

b2

)}

= ∓ λ̄i

2
. (13)

Here the upper (lower) sign is applied at r = r2 (at
r = r1) for a two-brane model. For a single brane
model, we apply the upper case at r = r0. Throughout
this paper, we use the notation ri(i = 0, 1, 2), where i
means the number of a brane. For a two-brane model
i = 1 and 2 stand for a negative and a positive tension
brane, respectively. While for a single brane model,
we use i = 0 to stand for a brane (see Fig. 1).

3. INSTANTON SOLUTION

We first provide a solution of Eqs. (9) and (10) in
a bulk. Eq. (10) gives the quadratic equation,

6X + 12αX2 = Λ, (14)
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where

X ≡ k − b′2

b2
. (15)

If α 6= 0, Eq. (14) gives two solutions:

X = X± ≡ −1 ± η

4α
, (16)

where η =
√

1 + 4αΛ/3. Here we find two solutions;
one is called a plus-branch and the other is a minus-
branch. The limit of α → 0 exists only for the plus-
branch solution.

In this paper we consider only a negative cosmolog-
ical constant (Λ < 0). 1 Then we have the following
constraint,

− 3

4α
≤ Λ < 0 , (17)

which is required in order that X± be a real value.
The range of η is restricted as 0 ≤ η < 1 from the
constraint (17). Under this condition, X± is always
negative. We then introduce a typical length scale as

l± ≡ (−X±)−1/2 =

[

−3(1 ± η)

Λ

]1/2

. (18)

Since X ′ = 0, we find b′′ = l2±b from Eq. (15). This
with Eq. (14) guarantees Eq. (9). Hence Eq. (16)
gives a bulk solution.

In what follows, we discuss the instanton solutions
for each value of k in order.

3.1. de Sitter brane instanton (k = 1)

In the case of k = 1, the solution (16) is written by,

b(r) = l± sinh

(

r

l±

)

, (19)

which also satisfies Eq. (9) in a bulk. From this bulk
solution, we construct an instanton solution by cutting
the space at r = ri and gluing two copies of it on the
surfaces of the corresponding point so that a compact
Euclidean manifold (instanton) is obtained. At r = ri,
we impose the Israel’s junction condition (13) with
k = 1. For a single brane instanton, we impose the “no
boundary boundary condition” at the origin [2]. For
a two-brane model, we impose the junction condition

1In the case of Λ = 0, there also exist instanton solutions.
For k = 1, the minus-branch solution is included in (16), and
the plus-branch solution is also included in the limit of X+ → 0.
This plus-branch solution is a 5D Milne universe. For k = 0 the
solutions of both branches is included in (27). For k = −1 only
the minus-branch solution exists and is included in (33).

at r1 and r2. As a result, the tension of i-th brane is
determined by these junction conditions. Substituting
(16) into (13) gives

λ̄
(±)
i = (−1)i 2

l±

[

(2 ± η)
cosh(ri/l±)

sinh(ri/l±)

+ 2(1 ∓ η)

(

cosh(ri/l±)

sinh3(ri/l±)

)]

.(20)

When we take the limit of α → 0 in the plus-branch,
we recover the Garriga-Sasaki instanton, i.e., l± = l ≡
√

−6/Λ, η = 1 , and

λ̄i = (−1)i 6

l
coth

(ri
l

)

. (21)

Here we note a “critical” tension. In a brane
model with a Gauss-Bonnet term in a bulk, we find
some contribution from the Gauss-Bonnet term in a
four-dimensional cosmological constant. As a result,
the fine-tuned value of the tension to find the 4D
Minkowski brane, which we shall call a critical ten-
sion, is modified from the Randall-Sundrum’s value.
The fine-tuned value is given by [12] as

αλ̄2
cr = 1 − 4αΛ ∓

(

1 +
4

3
αΛ

)3

. (22)

In our case, if we take the limit of r → ∞, the
brane approaches to 4D Euclidian flat space because
the radius of the brane (b(r)) becomes infinitely large
and the curvature of the brane (S4 manifold) vanishes.
At this limit, the tension of the brane (21) is

λ̄i,cr = (−1)i 2

l±
(2 ± η). (23)

This value is consistent with the above generalized
Randall-Sundrum tuning condition (22). Using this
critical tension, the tension of a positive-tension brane
is divided into two parts λ̄ = λ̄cr + 4λ̄. It turns
out that 4λ̄ is always positive because λ̄ decreases
monotonically with respect to r for 0 ≤ η < 1 Hence,
this brane has always a positive effective cosmological
constant, that is, the de Sitter brane.

We calculate the action in order to discuss which
state is most plausible when the brane universe is cre-
ated. The total Euclidian action for this solution is
calculated as

SE = −8π2

κ2
5

l3±

{[

(2 ∓ η) sinh

(

r2
l±

)

cosh

(

r2
l±

)

+(2 ∓ 3η)

(

r2
l±

)]

− [r2 → r1]

}

. (24)

For a single brane instanton, the action is given by
replacing r2 and r1 with r0 and 0, respectively.

Those actions do not have any minimum value, and
get small when the distance between two branes or

22nd Texas Symposium on Relativistic Astrophysics at Stanford University, Dec. 13-17, 2004

1102 3



the size of the brane becomes large. Although we can
claim that the brane universe may be created as large
as possible, we cannot predict the initial size.

The evolution of a brane after creation is given by
analytic continuation of the Euclidean metric

ds2E = dr2 + l2 sinh2(r/l±)
(

dχ2 + sin2 χdΩ2
(3)

)

(25)

by the Wick rotation, where dΩ2
(3) is the metric of the

3-sphere. It is done by substituting χ → iHt + π/2,
which leads to

ds2 = dr2 + (l±H)2 sinh(r/l±)

×[−dt2 +H−2 cosh2(Ht)dΩ2
(3)], (26)

where H ≡ l± sinh(ri/l±) (ri = r0 or r2) is the radius
of a brane. After the creation of this spacetime, the
universe inflates. If 4λ̄ is given by some potential of
a scalar field and will decrease to zero, inflation will
end (see Section 4).

3.2. Flat brane instanton (k = 0)

In the case of a flat brane (k = 0), the solution of
Eq. (15) is b(r) = b0e

±r/l± , where b0 is an integrating
constant. Due to the Z2 symmetry, we consider only
the plus sign without loss of generality, i.e.,

b(r) = b0e
r/l± . (27)

We can construct an instanton solution in the same
way as the previous case. We can impose the junction
conditions at the brane boundaries (r = r1 and r2,
or r0). This solution, however, does not satisfy the
no-boundary boundary condition, because b(r) does
not vanish at any point r. Thus we cannot construct
a single brane instanton solution. Here we consider
only a two-brane model.

The tension of i-th brane is determined by the junc-
tion condition (13) as

b′

b

(

3 − 4α
b′2

b2

)

= ∓ λ̄i

2
. (28)

Substituting Eq. (27) into Eq. (28),

λ̄
(±)
i = (−1)i 2

l±
(2 ± η) . (29)

This tension is independent of the position of a brane
and is the same as the critical tension (23).

As for the Euclidean action of this solution, we find

SE = −2V
(0)
4 b40(2 ∓ 3η)

κ2
5 l±

[

e4r2/l± − e4r1/l±
]

. (30)

Here V
(0)
4 is the volume of a 4D torus. This action

does also not have any minimum value with respect

to the distance between two branes. Then we cannot
predict the initial size of the universe. Note that we
can obtain a single-brane RS II model in the limit of
r1 → −∞. In that case, the total action SE is still
finite. Therefore, an instanton solution with one flat
brane exists.

The evolution of a brane universe after creation is
also given by analytic continuation of the Euclidean
metric

ds2E = dr2 + b20e
2r/l±

(

dτ2 + dx2 + dy2 + dz2
)

(31)

by the Wick rotation. Substituting τ → it, we obtain

ds2 = dr2 + b20e
2r/l± [−dt2 + dx2 + dy2 + dz2] . (32)

We recover the 4D Minkowski spacetime.

3.3. AdS brane instanton (k = −1)

In the case of an ‘open’ brane model (k = −1), the
solution of Eq. (15) is given as

b(r) = l± cosh

(

r

l±

)

. (33)

We impose the junction condition at the boundary
(r = r1 and r2). For the same reason as for a flat
brane model, this solution does not provide a single
brane model.

The tension of the i-th brane is determined by the
junction condition (13) as

b′

b

(

3 − 4α
b′2

b2
− 12α

1

b2

)

= ∓ λ̄i

2
. (34)

Substituting Eq. (33) into Eq. (34), we obtain

λ̄
(±)
i = (−1)i 2

l±

[

(2 ± η)
sinh(ri/l±)

cosh(ri/l±)

− 2(1 ∓ η)
sinh(ri/l±)

cosh3(ri/l±)

]

. (35)

In the limit of r → ∞, we recover the critical tension
(23), since the curvature of the brane vanishes. Fur-
thermore, if we divide the tension (35) into two parts,
λ̄ = λ̄cr + 4λ̄, we find that 4λ̄ is always negative for
0 ≤ η < 1 Since this tension gives a negative effec-
tive cosmological constant on the brane, the brane is
anti-de Sitter spacetime.

The total action (SE = Sbulk
E + Sbrane

E ) is given by

SE = −3V
(−)
4

κ2
5

l3±

{[

(−2 ± η) cosh

(

r2
l±

)

sinh

(

r2
l±

)

+ (2 ∓ 3η)

(

r2
l±

)]

− [r2 → r1]

}

. (36)

Here V
(−)
4 is the volume of a 4D manifold with k =

−1. Again we do not have any minimum in this action.
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We cannot give any prediction for a created brane
spacetime.

To discuss the evolution of the brane universe after
creation, we have to perform the analytically contin-
uation of the Euclidian space:

ds2E = dr2 + l2± cosh2(r/l±)ds2E,4 (37)

with

ds2E,4 = dχ2 + sinh2 χ
(

dψ2 + sin2 ψdΩ2
(2)

)

. (38)

By the double Wick rotations [? ], i.e., χ → i(t+π/2)
and ψ → iφ, we obtain the metric of the brane as

ds24 = −dt2 + cos2 t
(

dφ2 + sinh2 φdΩ2
(2)

)

, (39)

which gives the AdS spacetime.

4. Trace Anomaly

In the previous section, although we can find instan-
ton solutions for several situations, we cannot provide
the most plausible state of the brane universe because
the action does not give any minimum value. If we
choose the critical tension to obtain a zero cosmolog-
ical constant, only a flat brane instanton is possible.
The size of the brane universe, however, is not deter-
mined. Any distance between two branes is possible.
We again lose the predictability. In this section we
discuss another effect, which may predict the initial
state of the brane universe. In a curved space time,
we know that even in the absence of classical gravi-
tational action, quantum fluctuation of matter fields
provides a nontrivial gravitational action through a
trace anomaly term 〈τµν〉. In the case of free, mass-
less, and conformally invariant fields, these quantum
corrections take a simple form [13]. These terms were
discussed in the context of an inflationary scenario
[14] and of the creation of the universe [7, 15]. In
[7], assuming the critical tension, the size of the brane
universe is fixed. In the present case, we also take
into account the contribution of the trace anomaly,
our junction condition is modified as

[Bµν ]± ≡
[

−b
′

b

{

3 − 4α

(

b′2

b2
− 3

k

b2

)}]±

hµν

= −κ2
5 (τµν + 〈τµν〉) , (40)

where τµν is the energy-momentum tensor of the brane
matter fields and 〈τµν〉 is its trace anomaly term in-
cluding the tension of the brane, which is given by

〈τµν〉 = −λhµν +H(1)
µν +H(3)

µν . (41)

H
(1)
µν and H

(3)
µν take the following forms:

H(1)
µν = −k1

(

2RRµν − 1

2
hµνR

2 − 2∇µ∇νR

+2hµν∇α∇αR) , (42)

H(3)
µν = k3

(

−R σ
µ Rνσ +

2

3
RRµν +

1

2
hµνR

στRστ

−1

4
hµνR

2

)

, (43)

where R and Rµν are the 4D scalar curvature and
Ricci tensor, respectively. The coefficient k1 may not
appear in N = 4 super conformal Yang-Mills theory
but can be included to obtain a successful inflationary
scenario. k3 is uniquely determined:

k3 =
1

2880π2
(2N0 + 11N1/2 + 62N1), (44)

where N0, N1/2, and N1 are the number of quantum
fields with spins 0, 1/2, and 1, respectively.

We shall include the trace anomaly terms for our
instanton solutions. By using the metric (8),

we obtain

〈τµν〉 = −λhµν − 3k3

b4i
hµν . (45)

For a flat brane, the trace anomaly terms H
(1)
µν and

H
(3)
µν vanish. Hence the junction condition is
[

b′

b

{

3 − 4α

(

b′2

b2
− 3k

b2

)}]±

= −
(

λ̄+
3k̄3

b4i

)

, (46)

where λ̄ = κ2
5λ and k̄3 = κ2

5k3.
For a positive tension brane (either a single brane

or the second brane of two-brane model), we obtain

λ̄ = 2
b′i
bi

{

3 − 4α

(

b′2i
b2i

− 3k

b2i

)}

− 3k̄3

b4i
. (47)

Since a trace anomaly (45) is always negative (or zero
for a flat brane), the tension is always below the value
obtained previously. It turns out that only a de Sitter
brane with k = 1 is possible if we adopt the critical
tension. We show the tension in terms of including
trace anomaly terms in Fig. 2.

λ̄(±) =
2

l±

{

(2 ± η) +
2(1 ∓ η)

sinh2(ri/l±)

}

− 3k̄3

l4± sinh4(ri/l±)
. (48)

If the tension is the critical value (23), we find a unique
solution with a finite radius.

For a two-brane model, if the tension on one brane
is critical, the other is not the case. For example, if the
tension of the positive tension brane (r2) is critical, an
effective cosmological constant on the negative tension
brane (r1) is positive. Conversely, if the tension of the
negative tension brane (r1) is critical, we find AdS
universe on the positive-tension brane. For a single
brane model, the radius of the created brane universe
is fixed.

Note that since the trace anomaly always vanishes
for a flat brane, the flat two-brane model at any dis-
tance is possible.
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Figure 2: The tension for a de Sitter brane instanton
with η = 2/3 and k̄3/l3± = 3, 10, 102, 103, and 0, where
k̄3 = 0 gives the case without the trace anomaly term.
This figure corresponds to the cases of plus branche. For
minus branch the shape is similar to plus branche’s.
Since limri→∞[λ̄ − λ̄cr] = 0+, we find a unique solution
at a finite radius if the tension is the critical value λ̄cr.

5. CONCLUSION

We have presented instanton solutions in the model
with a Gauss-Bonnet term. If a brane is a closed uni-
verse, we find both two-brane and single-brane de Sit-
ter brane instantons. For a flat brane universe, we can
also construct a two-brane instanton solution. As for
a single-brane model, a compact bulk spacetime with
a single brane is not possible because a flatness of the
brane is not consistent with a no-boundary boundary
condition. However, the RS II type instanton with
a non-compact bulk spacetime is allowed because its
Euclidean action is finite. For an anti-de Sitter brane
instanton with negative curvature, we can also con-
struct only a two-brane instanton solution. In this
case, the RS II type instanton does not exist because
the Euclidean action diverges.

Although we find instanton solutions in the model
with a Gauss-Bonnet term, we cannot predict the ini-
tial state of the brane universe. This is because the
Euclidian action has no minimum value. For a flat
and an anti-de Sitter brane, the volume of a created

brane universe V
(k)
4 is not fixed as well. V

(k)
4 can be

arbitrary.
As for the tension of a brane, although the critical

tension requires fine-tuning, we need such a choice to
explain the present small value of the universe. Such
a tuning could be obtained in some super symmet-
ric theories, such as the Horava-Witten model. Here
we assume such a tuned value, i.e., the critical ten-
sion. Then we also include trace anomaly terms on
the brane. In this case, we can predict the size of
the universe. If we have a single-brane universe with
a no-boundary boundary condition, the created uni-
verse is in de Sitter phase and naturally evolves into

the inflationary stage.
Although we construct brane instanton solutions,

in order to predict the initial state of created brane
universe, we need to include other important effects,
such as the Casimir energy, which are not taken into
account here. These issues are left for future study.
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