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Neutron stars are the densest massive objects in the universe. They are ideal astrophysical laboratories to

test theories of dense matter physics and provide connections among nuclear physics, particle physics and

astrophysics. Recent observations, including studies of binary pulsars, thermal emission from both isolated

and accreting neutron stars, and glitches from pulsars provide information about neutron star masses, radii,

temperatures, ages and internal compositions. Of particular recent interest are new estimates of masses in radio

binary pulsars and a proposition that the relativistic binary pulsar PSR J0737-3039 could give a moment of

inertia measurement.

1. GLOBAL ASPECTS OF NEUTRON
STARS

Figure 1: Internal structure of a neutron star, courtesy
Dany Page.

Neutron stars can be broadly categorized as be-
ing normal or self-bound. Normal neutron stars are
largely composed of nucleonic matter and have sur-
faces where both the pressure and energy density van-
ish. Normal stars may have exotic matter, such as
hyperons, Bose condensates (pions or kaons) and/or
nearly free quark matter in their interiors. Self-bound
stars, on the other hand, have surfaces at which the
pressure vanishes but the energy density remains fi-
nite. The best-known example of a self-bound star
is a star composed completely of strange quark mat-
ter. Although there exists no convincing observational

evidence that strange quark matter stars exist, they
remain a tantalizing possibility if the ultimate ground
state of matter is strange quark matter, not nucleonic
matter.

The internal structure of a normal neutron star is
depicted in Figure 1. The star can be viewed as having
5 regions.

• The atmosphere shapes the thermal optical, ul-
traviolet and x-ray spectrum.

• The envelope, whose composition determines its
relative effectiveness as an insulating layer, has
densities ranging below 1 g cm−3.

• In the density range up to about 1014 g cm−3,
the crust is chiefly populated with nuclei and
electrons. Above the neutron drip density (4 ·
1011 g cm−3) a sea of (likely superfluid) neu-
trons accompanies the nuclei and becomes more
abundant at higher densities. A popular model
for glitches involves weak coupling between nor-
mal and superfluid matter within the crust.

• The outer core consists of nucleons, electrons
and muons. Protons in the outer core may be
superconducting.

• Depending upon the stellar mass and the rela-
tive stiffness of matter, an inner core with exotic
matter may exist.

The global structure of neutron stars is conve-
niently displayed using mass- radius diagrams (Fig-
ure 2) which highlight the variations allowed by un-
certainties in the underlying dense matter equation of
state (EOS, i.e., P (ρ), where P is the pressure and ρ
is the energy density of matter). These structures are
computed utilizing the Tolman-Oppenheimer-Volkoff
relativistic structure equations.

The upper left and lower right regions of Fig-
ure 2 can be excluded from consideration on the basis
of general relativity and other physical constraints.
These limits include

• The Schwarzschild constraint, R > 2GM/c2,
that the star’s surface does not lie within its
event horizon.
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Figure 2: Mass-radius diagram. The blue region ’GR’ is
excluded by general relativity, the light blue region by
finite pressures, and the green region by causality. Solid
black curves depict normal neutron stars; solid green
curves show strange quark matter stars. EOS labels are
defined in [1]. Orange contours show fixed values of R∞.
The dashed curve shows a radius limit from glitches, the
dash-dot curve shows the redshift z = 0.35, and the red
region is excluded by the most rapidly rotating pulsar
(P = 1.6 ms).

• The condition that the central pressure remains
finite, Pc < ∞, or R > (9/4)GM/c2.

• The condition that the sound speed within
the star remain less than the speed of light,
∂P/∂ρ ≤ c2. This results in, approximately,
R > 3.01GM/c2 [2, 3].

• The condition that the most rapidly rotating
neutron star rotate with a frequency ν less than
the mass-shedding limit where the surface ro-
tates with the Keplerian frequency. For a rigid
sphere 2πν =

√

GM/R3. A rapidly spinning
star is deformed, and for a neutron star, gen-
eral relativistic effects are substantial. Never-
theless, a relatively EOS-independent limit can
be deduced[5]:

ν ≤ 1045 ± 30

√

M

M�

(

10 km

R0

)3/2

Hz. (1)

Other inferred limits have come from pulsar
glitches. Several pulsars exhibit stochastic breaks in
their otherwise regular pulsing frequencies. A glitch
is a sudden increase in pulsar spin frequency (by a
part in 107 or so) which relaxes over a period of weeks
toward the original spin frequency. From the cumu-
lative number and magnitudes ofthe glitches in the
case of the Vela pulsar over a period of 30 years, it

can be inferred that at least 1.4% of the total mo-
ment of inertia of the star is contained in the region
responsible for glitches[4]. Presumably this region is
the neutron star crust. It can be demonstrated that
the fractional moment of inertia ∆I/I of the crust is
approximately proportional to PtR

4/M2 where Pt is
the pressure of matter at the core-crust interface. Al-
though the value of Pt is uncertain by about a factor
of 3 or 4, the largest possible value of Pt, together
with the above lower limit to ∆I/I, permits a lower
limit to R for a given M to be established. This limit
is shown in Figure 2.

Other constraints could be established from the red-
shifts of spectral lines or from radiation radii

R∞ = R/
√

1 − 2GM/(Rc2) (2)

determined from thermal emission from neutron stars.
Recently, wide lines were observed in the x-ray burst
source EXO 0748-676. A tentative identification with
heavy element lines has resulted in the estimate of
z = (1− 2GM/c2)−1/2 − 1 ' 0.35 for this source. Un-
fortunately, no reliable estimates for the radiation ra-
dius R∞ have been possible from observed thermally-
emitting neutron stars. Problems include uncertain-
ties in the neutron star atmosphere, the strength and
structure of surface magnetic fields, and distances. In-
ferred values of R∞ are directly proportional to the
distance.

2. CHARACTERISTICS OF THE
EQUATION OF STATE

Normal matter EOS’s generally satisfy the poly-
tropic relation P ∝ n2 in the vicinity of the nuclear
saturation density, ns ' 2.7·1014 g cm−3 ' 0.16 fm−3.
The EOS’s used in Figure 2 and several additional ex-
amples are plotted in Figure 3. At large densities,
each of these EOS’s eventually softens, in some cases
due to the appearance of exotic matter. In any event,
the restriction of causality requires this behavior.

A Newtonian polytropic star with index N obeys
the scaling

R ∝ KN/(3−N)M (1−N)/(3−N)

∝ P
N/(3−N)
0 n

−(N+1)/(3−N)
0 M (1−N)/(3−N) (3)

where K = P0/n
1+1/N
0 and the subscript 0 refers to a

fiducial density. In the case N = 1 one has

R ∝ P
1/2
0 n−1

0 M0 (4)

so that the radius is insensitive to the mass. Indeed,
this behavior is apparent in Figure 2 for many EOS’s
for stars with masses in the range 0.5 M� < M <
1.5 M�. The above relation also suggestst that a ra-
dius measurement could give some information about
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Figure 3: Pressure of various equations of state (see
Ref. [1] for descriptions and references) as a function of
baryon densities. Green and yellow shaded regions
display hypothetical confidence bands for three radius
measurements with the indicated uncertainties.

Table I Pressure-Radius Correlation Constant
CM (n0), dimensions km fm3/4 MeV−1/4

n0/ns 1 M� 1.5 M�

1.0 9.53 ± 0.32 9.30 ± 0.60

1.5 7.14 ± 0.15 7.00 ± 0.31

2.0 5.82 ± 0.21 5.72 ± 0.25

P0. Reference [1] has, in fact, found precisely that.
They found the phenomenological relation

RM = CM (n0)P0(n0)
1/4 (5)

where RM is the radius of a star of mass M , P0(n0

is the pressure at the density n0, and CM (n0) is a
constant fitted to a large number of EOS’s (rms errors
are typically less than 5% for ns < n0 < 2ns).

It should also be noted from Figure 3 that there is
a large uncertainty in P0, about a factor of 6. This
accounts for the estimated range of neutron star radii
9 km < R < 16 km. This uncertainty in P0 can be
traced directly to the uncertainty in the so-called sym-
metry energy of nuclear matter. Near the nuclear sat-

uration density ns and for nearly symmetric cold mat-
ter (i.e., x ≡ np/(nn + np) ' 1/2 and T = 0) one can
expand the energy per baryon of nucleonic matter:

E(n, x) = −16 +
K

18

(

1 − n

ns

)2

+
K ′

27

(

1 − n

ns

)3

+ Esym(n)(1 − 2x)2 . . . . (6)

Here, K and K ′ are the incompressibility and skew-
ness parameters, respectively, and Esym is the symme-
try energy function, approximately equivalent to the
energy difference at a given density between symmet-
ric and pure neutron matter. The symmetry energy
parameter is defined as Sv ≡ Esym(ns). Leptonic con-

tributions Ee = (3/4)h̄cx(3π2nx4)1/3 must be added
to ensure charge neutrality. Matter in neutron stars
is in beta equilibrium, i.e.,

µe = µn − µp = −∂E/∂x, (7)

so the the equilibrium proton fraction at ns is

xs ' (3π2ns)
−1(4Sv/h̄c)3 ' 0.04. (8)

The pressure at ns is

P (ns, xs) = ns(1 − 2xs)[nsS
′

v(1 − 2xs) + Svxs]
' n2

sS
′

v , (9)

due the small value of xs. Here S′
v ≡ (dEsym/dn)ns

.
Thus the pressure depends primarily upon S′

v.

The equilibrium pressure at moderately larger den-
sities similarly is insensitive to K and K ′ and con-
trolled by dEsym/dn. Experimental constraints to the
compression modulus K, most importantly from anal-
yses [6] of giant monopole resonances, give K ∼= 220
MeV. The skewness parameter K ′ has been estimated
to lie in the range 1780–2380 MeV [7]. Evaluating the
pressure for n = 1.5ns,

P (1.5ns) = 2.25ns[K/18 − K ′/216
+ ns(1 − 2x)2(dEsym/dn)1.5ns

] , (10)

and it is noted that the contributions from K and K ′

largely cancel.
It is known that dEsym/dn for n < ns is partially

constrained by the nuclear surface energy[8, 9]. Nu-
clear binding energies yield a significant correlation
between Sv and S′

v, but cannot determine either with
precision. It is hoped that experiments to measure the
neutron skin thickness of Pb and other experiments
using rare-isotope accelerators to probe neutron-rich
heavy elements will become sufficiently precise to pro-
vide an independent, second, correlation that could
break the existing degeneracy.

3. ANALYTIC SOLUTIONS OF
EINSTEIN’S EQUATIONS

Some insight into the global structures of neutron
stars can be obtained by investigating selected ana-
lytic solutions’s to the Tolman-Oppenheimer-Volkoff
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equation. With the constraint that the pressure and
energy density both vanish at the surface R, only 3
analytic solutions are currently known. These are due
to Tolman [10], Nariai [11], and Buchdahl [12]. An in-
finite set of analytic solutions are known for the case
in which the energy density is not required to vanish
at the surface (the self-bound case). Of the three for-
mer solutions, those due to Tolman and Buchdahl are
especially interesting.

Tolman’s solution has a simple density profile

ρ = ρc[1 − (r/R)2] (11)

leading to the radius-mass relation

R =

(

15M

8πρc

)1/3

. (12)

Buchdahl’s is the only analytic solution with an ex-
plicit EOS

ρc2 =
√

PP∗ − 5P, (13)

which in the low-density limit is just a polytrope with
index N=1. In these equations, ρc is the central en-
ergy density and P∗ is a constant reference pressure.
Buchdahl’s solution has the radius-mass relation

R =

√

πc4(1 − β)2

2GP∗(1 − 2β)
, (14)

where β = GM/Rc2. This relation can be used to
justify the phenomenological relation Eq. 5. Differen-
tiation of Eq. 14 leads to the exponent

d ln R

d ln P

∣

∣

∣

∣

∣

n0,M

=
1

2

(1 − 10
√

P/P∗)

(1 + 2
√

P/P∗)

(1 − β)(1 − 2β)

(1 − 3β + 3β2)
.

(15)
Note that Eq. 15 predicts an exponent 1/2 in the limit
β → 0 and P0 → 0. Finite values of β and P0 reduce
the exponent. If M and R are about 1.4 M� and
15 km, respectively, for example, β ' 0.14 and Eq. 14
gives P∗ = .5π/R2 ≈ 6.98 ·10−3 km−2 (in geometrized
units where G = c = 1). At a fiducial density n0 =
1.5ns, equivalent in geometrized units to n0 = 2.02 ·
10−4 km−2, Eq. 13 then implies P0/P∗ ' 28.8 and
Eq. 15 yields an exponent of about 0.28.

It is also interesting to examine analytic solutions
for self-bound stars. The simplest of these is that of
the constant density fluid, for which

R =

(

3M

4πρc

)1/3

. (16)

Strictly speaking, this solution is relatively non-
physical because it has an infinite sound speed. The
simplest of the analytic self-bound cases with finite

sound speeds is a solution recently found by Lake [13].
This solution has a radius-mass relation given by

4πρR2 = β(2 − 2β)2/3 6 − 15β + 5β(r/R)2

(2 − 5β + 3β(r/R)2)5/3
(17)

and a pressure profile given by

4π
P

c2
R2 =

β

2 − 5β + β(r/R)2
×

[

2 − (2 − 2β)2/3(2 − 5β + 5β(r/R)2)

(2 − 5β + 3β(r/R)2)2/3

]

. (18)

This particular solution has the interesting property
that the speed of sound cs throughout the interior has
a value c2

s ≈ 1/3, which is approximately the case for
strange quark matter stars. In the high-density limit,
asymptotically free quark matter has c2

s = 1/3.

4. MAXIMUM DENSITY AND MASS

Assuming the EOS is known up to a fiducial energy
density ρ0, and assuming an upper limit c2

s = 1 for
matter at higher densities, it can be shown [15] that
the maximum neutron star mass satisfies

Mmax ' 4.1
√

ρs/ρ0 M� (19)

where ρs is the nuclear saturation density. Similarly,
the radius of the maximum mass star satisfies

Rmax ≥ 3.01
GMmax

c2
km. (20)

If such stars were incompressible, this would suggest
that the central density ρc would have to be less than
the value

ρc,Inc ≤ 3

4πM2
max

(

c2

3.1G

)3

' 5.5 · 1015(M�/M)2 g cm−3. (21)

However, the constant density solution violates
causality, and thus represents a severe underesti-
mate to the limiting density. Interestingly the corre-
sponding limit determined using the Tolman solution
(Eq. 12) actually does bound all realistic EOS’s [14]:

ρc,T =
5

2
ρc,Inc ≤ 13.8 · 1015(M�/M)2 g cm−3. (22)

It is shown in Figure 4, which includes results from
a large number of EOS’s of various types, with and
without exotic components.

One of the most exciting recent developments is the
accumulation of significant mass information for neu-
tron stars. Almost exclusively, this data comes from
neutron stars in close binary systems (see Figure 5.
The most accurately measured masses are from timing
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Figure 4: Central energy densities as a function of
maximum masses for various equations of state.
NR=non-relativistic, R=relativistic. For comparison,
limiting central energy densities for the constant-density
and the Tolman solutions are displayed. The upper scale
for baryon density is a rough approximation since the
precise conversion is EOS-dependent. The horizontal line
at M = 2.2 M� is to guide the eye. From Ref. [14].

observations of the radio binary pulsars[16]. Ordinar-
ily, observations of binary pulsars yield orbital sizes
andperiods from Doppler phenomena, from which the
total mass of the binary can be deduced. But the
compact nature of these binaries permits, in some
cases, detection of relativistic effects, such as Shapiro
delay or orbit shrinkage due to emission of gravita-
tional waves, which constrains the inclination angle
and permits the mass ratios to be determined. A suf-
ficiently well-observed system can have masses mea-
sured to impressive accuracy. The textbook case is the
binary pulsar PSR B1913+16, in which the masses are
1.3867 ± 0.0002 and 1.4414 ± 0.0002 M�[17].

It is interesting that radio binaries with white dwarf
companions exhibit a broader range of neutron star
masses than double neutron star binaries. Ref. [18]
suggested that a rather narrow set of initial conditions
are needed to form double neutron star binaries, in-
cluding initial stellar masses that are nearly equal and
are also in a restricted range. This leads to neutron
star masses that therefore display only limited varia-
tions. These restrictions are relaxed for other neutron
star binaries. As Figure 5 indicates, a few of the neu-
tron stars in the white dwarf binaries may contain
neutron stars considerably larger than the canonical
1.4 M� value, including the case of PSR J0751+1807
in which the 1σ error range is 2–2.4 M�, and 1.4 M�

is about a 4σ excursion. Indeed, the mean observed
masses in white dwarf binaries exceeds that of the dou-
ble neutron star binaries by about 0.25 M�, although
the 2σ error ranges for all but one of these systems
extends below 1.45 M�.

Figure 5: Measured and estimated masses of neutron
stars in radio binary pulsars (gold, silver and blue
regions) and in X-ray binaries (green). Letters following
binary names indicate references which are provided in
Ref. [14].

Masses can also be estimated for another handful
of binaries which contain an accreting neutron star
emitting X-rays (see Figure 5). Some of these systems
are characterized by relative large masses, but their
estimated errors are also large. The system of Vela X-
1 is noteworthy because the lower mass limit (1.6–1.7
M�) is constrained by geometry[19]. One should note
that it is not definite that all of the X-ray sources in
Figure 5 contain neutron stars. The source 4U 1700-
37 might be a black hole, due to lack of oscillations
in its X-ray spectrum[20]. Another high-mass object,
2S 0921-630[21] could either be a high-mass neutron
star or a low-mass black hole. These two objects could
play a role in determining the neutron star maximum
mass and black hole minimum mass division.
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5. MOMENTS OF INERTIA

We have already discussed how glitches can be used
to set constraints on the crustal fraction of the mo-
ment of inertia. However, the possibility exists in suf-
ficiently relativistic binaries to use spin-orbit coupling
to determine the moment of inertia of the more rapidly
spinning neutron star. The recently discovered [22]
relativistic binary pulsar PSR J0737-3039 could be-
come the first in which a neutron star moment of in-
ertia is measured.

There are two kinds of spin-coupled precession ef-
fects in a binary system of compact stars: spin-orbit
and spin-spin couplings (for a comprehensive discus-
sion, see Refs. [23, 24]). Spin-orbit coupling leads

to a precession of the angular momentum vector ~L
of the orbital plane around the direction of the total

angular momentum ~J of the system. This is some-
times called geodetic precession, and is related to the
Thomas precession of atomic physics. Since the total

angular momentum ~J = ~L + ~SA + ~SB is conserved
(at this order), there are compensating precessions of

the spins ~SA and ~SB of the two stars. Since the or-
bital angular momentum dominates the spin angular
momenta in binaries, the geodetic precession ampli-
tude is very small while the associated spin precession
amplitudes are substantial. In addition to geodetic
precession, spin-orbit coupling also manifests itself in
apsidal motion (advance of the periastron). Spin-spin
coupling is generally negligible in binary systems be-

cause |~L| >> |~SA|, |~SB |.
According to [23], the spin and orbital angular mo-

menta evolve according to

~̇Si =
G(4Mi + 3M−i)

2Mia3c2(1 − e2)3/2
~L × ~Si,

˙~LSO =
∑

i

G(4Mi + 3M−i)

2Mia3c2(1 − e2)3/2

(

~Si − 3
~L · ~Si

|~L|2
~L

)

,(23)

where the superscript SO refers to the spin-coupling
contribution only (there are also first- and second-
order post-Newtonian terms, 1PN and 2PN, respec-
tively, unrelated to the spins, that contribute to this
order). Here a is the semimajor axis of the effective
one-body orbital problem (sum of the semi-major axes
of the two stellar orbits), e is the eccentricity, and Mi

and M−i refer to the masses of the two binary com-
ponents (for i = A, B we use −i = B, A). To this
order, one may employ the Newtonian relation for the
orbital angular momentum

|~L| =
2πMAMBa2

√
1 − e2

MP
= MAMB

√

Ga(1 − e2)

M
(24)

where P is the orbital period and M = MA + MB .
Then, from Eq. 23, the spin precession periods are

Pp,i =
2c2aPM(1 − e2)

GM−i(4Mi + 3M−i)
, (25)

which are not identical for the two components unless
they are of equal mass. The spin precession periods
are independent of the spins, and in the case of PSR
J0737-3039 are relatively short, being of order 75 years

for each pulsar. If the spins are parallel to ~L, there is
no spin precession and the spin-orbit contribution to
the advance of the periastron is in the sense opposite
to the direction of motion. However, this does not
appear to be the case for PSR J0737-3039.

The spin precession leads to two observable effects.
First, as the spin axis change orientation in space,
the pulsar beams will sweep through changing direc-
tions in space. In many cases, this will lead to the
periodic appearance and disappearance of the pulsar
beam from the Earth. Second, since total angular mo-
mentum is conserved (to this order), the orbital plane
will change orientation. This will be observed as a pe-
riodic change in the inclination angle i with amplitude

δi =
| ~SA|
|~L|

sin θA ' IAM

a2MAMB(1 − e2)1/2

P

PA
sin θA ,

(26)
where IA is the moment of inertia of pulsar A. This
in turn causes a periodic departure from the expected
time-of-arrival of pulses from pulsar A with amplitude

δtA =
MB

M

a

c
δi cos i =

a

c

IA

MAa2

P

PA
sin θA cos i (27)

if one can assume the orbital eccentricity is small.
This effect, however, will be almost negligible in the
case of PSR J0737-3039 because the inclination angle
i ' 90◦.

For the advance of the periastron, the ratio of the
spin-orbit and 1PN contributions is [24]

Ap

A1PN
= − P

6(1 − e2)1/2Ma2

∑

i

Ii(4Mi + 3M−i)

MiPi
(2 cos θi + cot i sin θi sin φi) . (28)

In the case that | ~SA| >> | ~SB |, only the i = A
term contributes substantially. For comparison, both
masses contribute to the 2PN contribution. In the
case of equal masses, the periastron advance ratio of
2PN to 1PN is [24]

A2PN

A1PN
=

GM

12ac2

(

189

1 − e2
− 47

)

. (29)

Assuming that the orientations of the spin of pulsar
A can be eventually determined, which seems feasible
given the large precessional amplitudes and the rel-
atively short precession period, the accuracy of the
determination of the moment of inertia rests upon de-
termining the individual masses to sufficient accuracy.
It is expected that within a few years a measurement
of IA to about 10% accuracy is feasible [25].
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Figure 6: Moments of inertia are plotted versus M/R.
Symbols for EOS’s are taken from Ref. [1]. Analytic
solutions are also plotted, including the constant density
(Inc), Tolman (T IV) self-bound, Buchdahl (Buch),
Tolman (T VII) and Nariai (N4) solutions discussed in
the text. The shaded band is the fit described in Eq. 31.
The inset shows the behaviors for M/R → 0. Figure
taken from Ref. [25].

The binary pulsar system PSR J0737-3039 con-
sists of two neutron stars and has these physical
parameters[22]:

GM

ac2
= 4.32 10−6, P/PA = 3.88 105,

IA

Ma2
= (7.74 10−11) IA,80, (30)

where IA,80 = IA/(80 M� km2). The moments of in-
ertia for stars constructed with many of the normal
matter equations of state used in Figures 2 and 3,
together with those of some analytic solutions, are
displayed in Figure 6. The shaded band shows a rela-
tively EOS-independent relation among I, M and R

I ' (0.237 ± 0.008) MR2×
[

1 + 4.2
M km

M�R
+ 90

(

M km

M�R

)4
]

(31)

that describes normal neutron stars without signif-
icant low-density softening. Strange quark matter
stars deviate substantially from this, however.

To remove the undetermined quantity R, Figure 7
shows the moment of inertia, scaled by M3/2 to re-
duce the dynamic range, as a function of M . It seems
clear that a measurement of I of the indicated pre-
cision could rule out many EOS’s. Dimensionally, I
scales with MR2, so in principle a measurement of
I with 10% accuracy implies an uncertainty in a ra-
dius estimate of about 5%, since M is known to much

Figure 7: Moment of inertia scaled by M3/2 versus M .
The shaded band shows a hypothetical measurement of

I/M3/2 = 50 ± 5 km2 M
−1/2

� . The error bar is set at the
precise mass of MA = 1.34 M�. The dashed line ’Crab’ is
a lower limit derived in Ref. [26] for the Crab pulsar.
Figure taken from Ref. [25].

Figure 8: Bands show allowed regions for indicated
hypothetical moment of inertia measurements with 10%
uncertainty (units of M� km2). The error bar is shows
the case IA,80 = 1.0 ± 0.1 and MA = 1.34 M�. Figure
taken from Ref. [25].

higher precision. The inferred value of R for a given
measured pair (I ± 10%, M ± 0%) is pictured by the
shaded bands in Figure 8. Their widths contain the
uncertainties inherent in the measurements of I and
M and in Eq. 31. The single error bar shows the case
IA,80 = 1.0 ± 0.1 and MA = 1.34 M�.
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6. RADIUS MEASUREMENTS

Most known neutron stars are observed as pulsars
and have photon emissions from radio to X-ray wave-
lengths dominated by non-thermal emissions believed
to be connected to the pulsar mechanism or the neu-
tron star’s magnetosphere. However, approximately
a dozen isolated neutron stars with ages up to a mil-
lion years old have been identified [27] with signifi-
cant thermal emissions. Stars of these ages are are
expected to have surface temperatures in the range of
3 × 105 K to 106 K, i.e., they are predominately X-
ray sources. If their total photon fluxes were that of
a blackbody, they would obey

F∞ = L∞/4πd2 = σT 4
∞(R∞/d)2, (32)

where d is the distance, and T∞, F∞ and L∞ refer to
the temperature, flux and luminosity redshifted rela-
tive to their values at the neutron star surface. For ex-
ample, T∞ = T/(1+z), F∞ = F/(1+z)2. As a result,
the radiation radius, R∞ = R(1+z), is a quantity that
can be estimated if F∞, T∞ and d are known. R∞ is a
function of both M and R, but if redshift information
is available, M and R could be uniquely determined.
Contours of R∞ are displayed in Fig. 2. A value of
R∞ requires both R < R∞ and

M < c2R∞/(3
√

3G) ' 0.13(R∞/km)M�. (33)

A serious problem in determining R∞ and T∞ is
that the star’s atmosphere rearranges the spectral
distribution of emitted radiation, i.e., they are not
blackbodies [28]. Neutron star atmosphere models
are mostly limited to non-magnetized atmospheres, al-
though pulsars are thought to have intense mngnetic
fields ≥ 1012 G. Strongly magnetized hydrogen is rel-
atively simple, but magnetized heavy element atmo-
spheres are still in a state of infancy.

A few cases exist in which the neutron star is suffi-
ciently close for detection of optical radiation. These
stars are observed to have optical fluxes factors of 3–
5 times greater than a naive blackbody extrapolation
from the X-ray range would imply. This optical ex-
cess is a natural consequence of the neutron star at-
mosphere, and results in an inferred R∞ substantially
greater than that deduced from the X-ray blackbody
alone. In many cases a heavy-element atmosphere ap-
pears to fit the global spectral distributions from X-
ray to optical energies while also yielding neutron star
radii in a plausible range. However, the observed ab-
sence of narrow spectral features, predicted by heavy-
element atmosphere models, is puzzling [29]. Perhaps
severe broadening of spectral features is caused by in-
tense magnetic fields or high pressures. Another pos-
sibility is that intense magnetic fields produce a phase
transition in which the atmosphere disappears, and a
bare heavy-element surface is exposed.

The estimation of radii from isolated neutron stars
is also hampered by uncertainties of source distance.
Distances to pulsars can be estimated by their dis-
persion measures to factors of 2 or 3, but in a few
cases parallax distances are possible. Parallaxes of
three sources (Geminga, RX J185635-3754 and PSR
B0656+14) have been obtained [30], but errors are
still large. As a consequence, values of R∞ deter-
mined from thermally-emitting neutron stars, while in
a plausible range, are not sufficiently precise at present
to usefully restrict properties of dense matter.

In this context, the recent discovery of thermal
radiation from quiescent X-ray bursters in globular
clusters is particularly interesting [31]. These sys-
tems contain rejuvenated billions of years-old neu-
tron stars heated by recent episodes of mass accretion
from their companions. Since the accreted material
is dominated by hydrogen, and accretion is believed
to quench magnetic fields, these stars may have the
simplest of all possible atmospheres: non-magnetic
hydrogen. Current results are consistent with radia-
tion radii R∞ ∼ 12 km, but accuracies are limited by
systematic uncertainties in the intervening interstellar
hydrogen column density, since this material obscures
50% or more of the X-ray flux. Interestingly, the dis-
tances to these sources will likely become relatively
well known in the near future, reducing a source of
error that plagues interpretations of isloated neutron
stars.
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