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The Effect of Inhomogeneities on the Luminosity Distance—Redshift
Relation: is Dark Energy Necessary in a Perturbed Universe?

A. Riotto

INFN, Sezione di Padova, Via Marzolo 8, 1-35131 Italy

The luminosity distance-redshift relation is one of the fundamental tools of modern cosmology. Cosmologi-
cal observations implementing the luminosity distance-redshift relation tell us that the Universe is presently
undergoing a phase of accelerated expansion. This seems to call for a mysterious Dark Energy component
with negative pressure. In this talk we argue that the need of a Dark Energy fluid may be challenged once
a realistic inhomogeneous Universe is considered and that an accelerated expansion may be consistent with a

matter-dominated Universe.

1. Introduction

One of the fundamental relations in cosmology is the
one expressing the luminosity distance dr of a cos-
mological source in terms of its redshift z. In recent
years this relation has been exploited to measure the
present value of the expansion rate, Hubble’s constant,
with increasing accuracy. With the exploration of the
Universe at redshifts of order unity, we now have infor-
mation about the time evolution of the expansion rate
[1]. A most surprising result is that the time evolution
of the expansion rate does not seem to be described
by a matter-dominated Friedmann-Robertson-Walker
(FRW) homogeneous cosmological model of the Uni-
verse. The usual explanation for the discrepancy is
that there is a new component of the energy density
of the Universe, known as Dark Energy, that deter-
mines the recent evolution of the expansion rate. Of
course all indications for Dark Energy are indirect;
from cosmological data we only infer that the Uni-
verse is presently undergoing a phase of acceleration.

Since the luminosity distance-redshift relation is of
such fundamental importance, we must understand
any possible effects that would result in a relation dif-
ferent from the FRW prediction for a homogeneous
Universe. The computation of the luminosity (or an-
gular diameter) distance in a locally non homogeneous
universe was first addressed by Zeldovich [2]). Dyer
and Roeder [3] adopted the so-called empty beam ap-
proximation to derive an equation for the angular
diameter distance. Our techinique instead relies on
the traditional perturbative approach, recently used
in Refs. [4, 5, 6].

In this talk we study the change in the luminos-
ity distance—redshift relation due to cosmological per-
turbations present in a background matter-dominated
Universe with zero cosmological constant. In particu-
lar, we provide the generic expression for the luminos-
ity distance-redshift relation at second order in per-
turbation theory, for any value of the physical redshift
and any direction of observation. We only consider
modifications to the luminosity distance-redshift re-
lation of a matter-dominated Universe, although our

results can be easily extended to a Universe contain-
ing a mixture of matter and other fluids. Our findings
may be used, for instance, to estimate the influence of
lensing on the brightness of supernovae sources. What
our second-order procedure does not account for is an-
other class of terms, where a first-order small deflec-
tion in the light ray leads the geodesic to deflect to a
region where the perturbations are sizeable relative to
the neighbourhood of the geodesic in the unperturbed
space-time.

It is well-known that the luminosity distance—
redshift relation allows to extract the theoretical pre-
dictions for the local Hubble rate H and decelera-
tion parameter ¢ upon expanding around the observer
point at z = 0. In a perturbed Universe, however,
both the Hubble constant and the deceleration param-
eter lose their deterministic nature; one has to con-
sider the statistical nature of the vacuum fluctuations
from which the present-day gravitational potential is
originated. Therefore, the theoretical predictions for
the expected values of the cosmological parameters
are accompanied by a nonvanishing cosmic variance
implying an intrinsic theoretical error. When calcu-
lating the variance of the deceleration parameter, we
uncover an interesting infrared effect. We observe, at
second order in perturbation theory, a large contribu-
tion to the variance from the cosmological perturba-
tions with the largest wavelengths. If inflation is the
origin of the cosmological perturbations [7], the be-
ginning of inflation provides a cut-off to the infrared
modes of the fluctuations. Our results suggest that
if the super-Hubble modes have physical significance,
they could yield a most important modification to the
deceleration parameter. One might even speculate
that a complete treatment of the effect could obviate
the need for the Dark Energy assumption. Indeed, de-
spite the fact that the homogeneous FRW model for
the matter-dominated Universe and no cosmological
constant predicts that the latter may not decelerate,
i.e. qo = % > 0, because of the large variance, the
true locally-determined value of the deceleration pa-
rameter has a non-zero probability of being less than
zero. Put it differently, the theoretical prediction in
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a perturbed matter-dominated model is not a single
well-defined curve in the luminosity-distance redshift
plane, but instead is represented by a finite confidence
region whose size is determined by the cosmic vari-
ance.

The talk is organized as follows. In the next section
we obtain the generic luminosity distance-redshift
relation valid at any order in perturbation theory
around the homogeneous FRW background. In Sec-
tion III we express the luminosity distance-redshift re-
lation in terms of the metric perturbations expanded
up to second order. Section IV is devoted to the evalu-
ation of the mean and the variance of the cosmological
observables and to the discussion of their implications.
Finally, Section IV present our conclusions and com-
ments.

2. The generic luminosity
distance—redshift relation

The goal of this section is to provide the reader with
the generic formulation of the luminosity distance—
redshift relation in a general setting. Our treatment
closely follows the one given in Ref. [4]. In the next
section, we will make use of this generic formula-
tion to obtain the luminosity distance-redshift rela-
tion in a perturbed FRW Universe being the back-
ground matter-dominated Universe with zero cosmo-
logical constant.

In order to deal with the propagation of light from a
given source to the observer, we make use of the con-
formal (Weyl) invariance of the electromagnetic field
and define

dg? = §udatds” = a® () gpdatdz” (1)

where z# = (n,z?) are the space-time coordinates and
the scale factor a is normalized to unity at the present
conformal time 79 (a(no) = ap = 1).

We will use a “”” to mark quantities calculated in a
space-time with the metric g,,,; quantities without “*”
will be calculated with the metric g,, instead. Fur-
thermore, quantities with a “~” stand for quantities
in a perturbed Universe.

Using the geometric optics approximation, the
energy-momentum tensor of a photon emitted by a
given source is

Th = A%tk (2)

where A is the scalar amplitude of the wave and k* is
the photon four-momentum:

dx*

B o= o =§"9,8S, ];;IJ’]%N:O7
P 2zt ., dz® dzP
vy, kH | iy | Iy
KVik dv? B du dv 0 (3)

Here S is the phase (eikonal) of the wave and v is an
affine parameter along the ray (i.e. along the photon
trajectory). The evolution of the parameter A is pro-
vided by the continuity equation V, T = 0: we have

A ~
4 _ _Lap,

il ) — 7 LM
=3 0=,k . (4)

All these equations can be replaced by the correspond-
ing ones in the metric g, . If we define

dA=a%dv, k'= %“ = a’k* (5)
we easily get
k, = 8,8, kPk,=0,
2 it a J.0
A A VLAY
d(d‘ia) = —%Aa& , 0=V,k". (6)

To obtain the equation describing the transport of the
optical scalar 6 (expansion of the null congruence k*)
along the ray, it is useful to recall the concept of null
(Newman-Penrose) tetrad: it is made of two real (k*
and m*) and two complex conjugate (t* and t#) 4-
vectors, satisfying

k*m, =
k'k, =

e, =1,

mtm,, = th't, = k't, =mFt, =0. (7)
Defining the projector

Pl = tht, + t, " = 08 — kymH —my k", (8)
one can easily obtain the decomposition (the semi-

colon indicates covariant differentiation in the confor-
mal space-time with metric g,,,,)

kpw = avky + bk, + Ay (9)
with
Ay = kapPlPl =28 (gtufy + Jtut,,> :
ak® = bk* =0, (10)

where @ is real and o is complex. With such a decom-
position we obtain

1z 2 1 ;v 0
0=Vuk , |O’| =§ ku;yk’ —E . (11)

The quantity o is called shear of the null congruence.

From the Ricci identity

ku;ud — (I/ « (5) = Rgu,,(;ka y (12)
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contracting the indices p and v, we obtain (see for
instance [9])

de 62
— = —R, kFE — — —2|0]. 1

In a similar fashion, the transport equation for the
shear o can be derived by contracting (12) with ###"k°
and assuming that t* is parallel-transported along the

ray; we get

o _ 4 + Coapuuk® kP87,

- vy —
o 'V, =0,

(14)

where Cyg,, is the Weyl tensor.

To calculate the luminosity distance, we need the
energy flux per unit surface, £, measured by an ob-
server with 4-velocity a*

(= \/ﬁ,w (ﬁJTUM) (aéiﬁév) — A%,

where

(15)

hyy = G + Uyt w=—q,k" . (16)
If the source has physical radius R (which we will
eventually set to zero) and if we choose the affine pa-
rameter A\ on the ray connecting the observer and the
source such that A = 0, A = A;, A = A; + A, cor-
respond to the observer today, to the surface of the
source and to its center, the power L emitted by the

source and measured by a comoving observer, is

L =4rR*((),) . (17)
The luminosity distance thus reads
£(As) A(Xs) >
= = 1 s)) 1
dr. =R 7(0) RA(O)( +zZ(As)) (18)
where the redshift Z is defined by
~ w (As)
1 = 1

To summarize, the evaluation of the luminosity dis-
tance goes through the following steps: one has to
solve for the photon trajectory from which one may
deduce the frequency w; then one is able to solve for
the expansion parameter 6 and the shear o; finally one
solves for the amplitude A.

3. The luminosity distance—redshift
relation in a perturbed FRW Universe

The formalism we have summarized in the previous
Section can now be applied to obtain the luminosity

distance-redshift relation in a perturbed FRW Uni-
verse. In particular, we are interested in a perturba-
tive treatment up to second order. This Section con-
tains only the main steps of the calculation, a plethora
of more details can be found in Ref. [8].

First of all, we need to expand the wave four-vector
of the photon reaching the observer at second order,

— b u u
Similarly, we expand the photon trajectory as
g (A) = a(o)(N) + 23y (A) + 25y (A) . (21)

Both quantities kfr) and the a:’(“‘T) (r =0,1,2) are fully
determined by the geodesic equation

d 7 7 7 _ © aB
= (k(o) + k) + k(2)) = —T* k%%

_ a 1.8 a 1.8
= —Tlhaskloy ko) ~ (Ffz)aﬂ k)
a 1.8 a 1.8
+ 2 sk K + Thiyas i ke ol ) » (22)

and by the initial conditions. We then need to perturb
the expansion 6 of our null congruence

0= 9(0) + 9(1) + 9(2) : (23)
these functions are determined by Eq. (13) and by the
boundary conditions. Furthermore, since the right-
hand side of Eq. (13) contains the square of the shear,
we need also to solve Eq. (14) up to first order, again
with suitable boundary conditions. After the quanti-
ties 0, o and A are known, one is ready to calculate
the luminosity distance—redshift relation. Sending the
physical size R of the source (and therefore A);) to
zero, we get the following expression

As
dL = (1 + g()\s)) U/O)\s [1 - %/ 0(1) (A, As) d\
0

1 As 2
2 /0 0y (A, As) dA

1

As
- 5 o A aA -k ()

+

1 As
= k() (As) + 5Ky (A) /0 Oy ()\,)\s)d)\](zzl)

This is the generic expression for the luminosity
distance-redshift relation at second order in perturba-
tion theory and for any value of the physical redshift
Z(\s) and any given direction of observation.

Since the physical observable is the redshift and not
the affine parameter Ay, we have to trade A, in terms
of Zin Eq. (24). In order to achieve this we may make
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use of the definition of the redshift in the unperturbed
Universe

[¢%)) /\s 1
1+Z=7, —=1- ) 25
a(mo —As) " mo Vi+z (25)

from which we deduce the relation between the phys-
ical redshift z and z

ap__ (uuk”) (As)

L E00) = 2500 (wak) (0)
=a (1~ (ku) () + kD) (\) )
[ oy (Xs)) +a’ (n0y (As)) (1) (As) + 1) (Xs))
1 17

+ 5@ (77(0) (As )) Ny (As) ]

= (1+z) (1+T1()‘s)+T2()‘s)) ’ (26)

where 7(;) and 7 are respectively the first- and
second-order expansion of the photon conformal time
and

(N = (— Z((g((;))) na) — k(1)> (A), (27)
_ a'(10)) a" (1) 5
(A = (‘ ) " k(z) = 2a(n) "

a'(ﬂ(o)) 2 a'(ﬂ(o)) 0
" (a(n(o)) 77(1)) i a(n(o)) ke | (28)
We may therefore compute first the luminosity
distance-redshift relation in terms of the parameter
z and then as a function of the physical redshift z us-
ing Eqs. (26), (27) and (28) to express z as a function
of Z.

To compute all these quantities we have to expand
the metric to second order. We adopt the comov-
ing and synchronous gauge (the luminosity distance—
redshift relation is a gauge-invariant concept as ex-
plicitly shown in Ref. [4] and therefore the choice of
the gauge is arbitrary)

ds? = —dn® + y;daida?
1
vii = (1= 2¢a) —¥2))0i5 + X1)ij + S X()ij (29)

where both x(1);; and x(2);; are traceless.

Assuming that the source and the observer are both
comoving with the fluid, one has (at any order in
perturbation theory) u* = §§. By solving Einstein’s
equations, the metric perturbations ¢,y x(r), r = 1,2,
can be expressed in terms of the peculiar gravitational

0006

potential ¢ [10]:
2
n 1
Xwijg = ~5 (so,z'j - —&N%) ; (30)

5
Sp+ V290 , (31)

Yoy = 39+ 73

at first order and

50 , 5n? UN 10 4 2 \2
Yoy =~ ¥ ¥ Fok o 3% pie + (Vi) ),
(32)
@ _ " 2 2 \2
Xii' = 196 (19<p iPki =120,V 0 + 4(V ) 7035
19 10n2 1
—?SO’MSO,M%‘)—T” (‘P,i‘P,j - gw’k%k(sij) +mij

(33)

at second order (the well-known residual gauge am-
biguity of the synchronous and comoving gauge has
been fixed as in Ref. [10]). We have disregarded both
linear vector modes (since they are not generated dur-
ing inflation) and linear tensor modes (because their
dynamical role is negligible). At second order ten-
sor modes described by 7;; do not enter in the com-
putation of the Hubble rate and the deceleration pa-
rameter. Furthermore, the values of the second-order
potentials have been computed with a proper match
to the initial conditions set by single-field models of
inflation [11] (notice, however, that the initial con-
ditions do not play a significant role, since physical
observables like the Hubble constant and the deceler-
ation parameter depend only upon the rate of change
of cosmological inhomogeneities).

4. Results and implications

We are now ready to extract from the findings of the
previous Section the relevant cosmological parameters
in a realistic perturbed Universe. To this purpose, let
us recall that in a generic unperturbed FRW Universe
the following relation holds

=Sl Za- )+0 (%) (34)
L_f}(g Z 2 do < )

where Hj is the unperturbed Hubble constant and g
is the unperturbed deceleration parameter. Therefore,
an observer measuring a relation of the type dyp =
A+4+Bz4+Cz24- - - would conclude that B and € provide
a measure of the Hubble constant and deceleration
parameter at the present epoch. To make contact with
this procedure, we may expand the generic formula
(24) for the luminosity distance (valid at any value of
the redshift 2) around z = 0. In this way, we may
determine the value of the Hubble constant and the
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deceleration parameter that would be measured by
an observer having at her/his disposal sources with
redshifts Z < 1 in a perturbed Universe. Performing
properly the angular average (---)q and comparing

this expansion of Eq. (24) with Eq. (34), we infer the
expression for Hy and for go:

Floda = 9o|1— - (500 + 100y + Yl + 15 (X)) X
ore ol =56 (2% T 1% TYove) + 35 (Xa)) X

1 5 2 b
= 1— [ =V - — —V?
%o[ (18V ¥~ 105 (V) + 570V

18 27 108

where ¥y, X(r) (r = 1,2) and ¢ are evaluated at the
observer’s position z) = 0 and at the present time
7o (note that Eq. (35) agrees with Eq. (39) of [12]).
Egs. (35) and (36) are among the main results of our
talk. The key point is that the values (35) and (36) of
the Hubble constant and the deceleration parameter
in a perturbed Universe are not deterministic. Indeed,
we must consider the statistical nature of the vacuum
fluctuations from which the present-day linear gravi-
tational potential ¢ is originated. This implies that
the gravitational potential does not have well-defined
values, but one can only define the probability of find-
ing a given value at a given point in space. In a given
realization of the perturbed Universe, the values of
the cosmological parameters may change in regions of
the Universe which are causally disconnected today.
Therefore, it is unavoidable that the theoretical pre-
dictions for the values of the cosmological parameters
come with a nonvanishing cosmic variance which im-
plies an intrinsic theoretical error.

It will turn out that the variance can be large and
get its largest contribution from the infrared super-
Hubble modes of the metric perturbations.

Let us evaluate the expected uncertainty in the de-
termination of the deceleration parameter, we treat
the metric fluctuation ¢ as a Gaussian random vari-
able with zero statistical mean over a volume which,
in the inflationary picture, has a size much larger than
the present-day Hubble radius. The variable ¢ takes
random values over different “realizations”. We may
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5 25 25 .
+ (—V290 + ooV — (W)2> (

)2 -Gt o) (2o

2 1/ .\
1+ 7 (2%0(1) + Py + Wayd) + 3 (X(Jl)) X(l)z’j)

1 1 i "
<§¢21)¢2’1) + 5 (xyis)" (Xd)) )]

1
2
2 ? 1 " 1 " 9 ! 2 " 7 ! i\ 1 ij \"
+ (—0) (5%0(1) %oty (¢(1)) +Pwva) + 45 (X(1)ij) (X(’l)) + 15 (X(’l)) X(1)ij
1 2\* (1 ,, .2 23 2 \*
— [ R - ’ZJ .. —_
5 9{0> + (30 (Vo) + 55 % ‘P,u) (9{0> ] ; (36)

express the variance in terms of the matter power
spectrum. The procedure would be to fix a spher-
ical domain of large volume V surrounding the ob-
server and containing the most distant sources of in-
terest (we are interested in comparing the theoretical
predictions of a perturbed Universe to the ones ob-
tained in a unperturbed FRW homogeneous classical
background. Since the quantities relative to the un-
perturbed model are recovered in the zero-momentum
limit, the volume average has to be performed over
a volume of size at least as large as the present-day
Hubble radius). However, since the main contribution
to the variance comes from the longest wavelengths,
this volume averaging is irrelevant (as a technical re-
mark, we stress that the low-pass filtering procedure
over the volume V should have been performed before
Taylor expanding the luminosity distance—redshift re-
lation (24) around the observer point at Z = 0. This
amounts to cutting off the spurious contribution of
ultraviolet modes to the means and variances of phys-
ical observables which would appear performing the
average after expanding in powers of the physical red-
shift). We will express ¢ and its derivatives in terms
of a Fourier integral, so

— / %k eik-Z ,_/ % ik - eiFE

SO - (27’(’)3 on I 90,1 - (271')3 2 Sok ’
% ik-Z

V2cp = —/W k2 ()01'6‘ ek , etc. (37)
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The Fourier components @;; satisfy

2m)36®) By + k2) Po(k1)  (38)
(2m)° {6 By + F2)0® (s + Fu)
P,(k1)P,(ks) + (cyclic terms)} ,

v =0, v; 91,

Ci1 ProPits Pria

X

where (- --) denotes the statistical average and P, (k)
is the power spectrum of the gravitational potential.
We can express P, (k) in terms of the matter power
spectrum as

1 A%k, a0)
kT
where A2(k,ag) is the (dimensionless) power spec-
trum of the matter density fluctuations linearly ex-
trapolated to the present time. We express the power
spectrum A?(k,ap) in terms of the transfer function
T?(k). For a Harrison—Zel’dovich spectrum, the power
spectrum is

(39)

B\
A%(kya0) = A? | —— | T%(k
(ka0) = A2 () T2(h),
where A is the dimensionless amplitude, A = 1.9 x
1073,

An analysis similar to the one performed in Ref. [12]
shows that the biggest contribution to the variance of
the deceleration parameter comes from the terms of
the type V2 whose variance is

(40)

9 > [ dk
Var [pV?¢] =~ (Zaéf}{é) k—llAQ(klaao)
X /d—]?AZ’(kz,ao)
k3

1R

Var [p] Var [V?¢] . (41)

Taking into account that T'(k) — 1 when k — 0,
we conclude that the variance of the deceleration pa-
rameter is sensitive also to the infrared modes of the
Harrison—Zel’dovich power spectrum and is

Va‘r [<a>9] N.A2 In
g0 B MIN

kmax kvax

~ 10719 In

, (42)
MIN
where kyn is the infrared cut-off and kyax is the
ultraviolet cut-off set by the averaging volume. We
can take it to coincide with the horizon volume, that
is kmax = Hy L

Rather than a Harrison—Zel’dovich spectrum, if we
assume a slightly red spectrum so that A2(k) oc k37
with 0 < (1 — ny) < 1, then the logarithmic term in
Eq. (42) is replaced by (1 — ns)il(kMAx/kMIN)(lin“).
Now this will give unit variance if

In kMAX/kMIN ~ (45 4+ In(1 — ns))/(l —ns). (43)

The variance of the deceleration parameter is in-
frared sensitive. There are various ways to avoid such
a sensitivity:

e If the power spectrum is blue, i.e. ng; > 1, the
variance does not pick up a large contribution
from the long wavelengths;

e One may imagine to fix the physical infrared
cut-off at a momentum scale corresponding to
the present-day Hubble radius, but in the infla-
tionary picture there is no strong motivation to
do so since inflation is likely to have lasted for a
period much longer than the minimum required
number of e-folds ~ 60. After inflation, the size
of the Universe which is relatively homogeneous
is of the order of ¢, ~ Hie", where N is the
total number of e-folds and Hy is the Hubble
rate during inflation. As the length scale ¢, is
much larger than the present-day Hubble size, it
seems reasonable to sum up all the super-Hubble
modes up to a length scale corresponding to £,
at the end of inflation (one should also keep in
mind that on scales larger than ¢, the Universe
may become extremely inhomogeneous due to
quantum fluctuations produced during inflation
and a considerable part of the physical volume
of the entire Universe may remain forever in the
inflationary phase [17]).

e The presence of an infrared sensitivity might be
only an artifact of the perturbative expansion
and it might disappear when dealing with a com-
plete nonperturbative approach. To check this
possibility, a computation beyond second order
is needed, even though we do not see any a pri-
ori reason why such cancellation should manifest
itself at higher orders.

Since our findings reveal the crucial role played by
the infrared modes, a deeper understanding of their
physical significance is certainly desirable (for refer-
ences dealing with the physical significance of the
super-Hubble modes neglecting the gradients see Refs.
[18] and [13]. Recently, it is has been claimed [19]
that “the relativistic zero-pressure fluid perturbed to
second order in a flat Friedmann background coin-
cides with the Newtonian result” and that “there are
no relativistic correction terms even near and beyond
the horizon to the second-order perturbation”. How-
ever, this claim relies on disregarding second-order
tensor modes and is not justified, as implied by the
discussion of Ref. ([20]), where it was stressed the im-
portance of second-order tensor modes for the correct
recovery of the Newtonian limit from the full rela-
tivistic theory). A large variance of the deceleration

parameter 7"%;[)(6)0] is caused by the fact that the

cosmological perturbations on super-Hubble scales are
time-dependent when gradients are consistently taken
into account. Indeed, it is easy to convince oneself
that, were the infrared part of the perturbations 1),
X(r) (r = 1,2) constant in time, they might be elim-
inated from the metric (29) by a simple rescaling of
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the spatial coordinates which allows to remain in the
synchronous gauge. Such a freedom is lost if the in-
homogeneities have a non-trivial time-dependence on
super-Hubble scales. Consider, for instance, the first-
order perturbation (1) = %cp-i— gv%. It contributes
to the metric (29) by a piece (1 — 42¢) §;; which can
be rescaled to d;; by a transformation of the spatial
coordinates. However, this change is not for free, it
gives rise to the crucial piece proportional to ¢©VZp
at second order as it is easily realized by inspecting
the transformations of the perturbations listed in Ref.
[10]. The fact that the variance gets its largest con-
tribution from a piece proportional to ¢V2¢ does not
then come as a surprise, it manifests the impossibility
of rescaling out the super-Hubble modes.

In the following, we set the infrared cut-off to the
value fixed by the beginning of inflation which, in turn,
depends upon the total number of e-folds N of the
inflationary period.

The ratio (kmax/kmin) is predicted by the infla-
tionary theory to be (we are adopting natural units)

Fvax: _ q0-30 (—TRH> eV, (44)

kEmin H,

where Try is the reheating temperature at the begin-
ning of the radiation era after the end of inflation.

For the variance to be of the order of the back-
ground value ¢ = %, the perturbation spectrum
would have to extend to a factor of exp(6 x 10'8)
(10'8-® e-folds!) times the present Hubble radius (for
Tru =~ Hi) in the case of the Harrison—Zel’dovich
spectrum. However, if, for instance, ny, = 0.94 on
super-Hubble-radius scales, then a variance of order
unity is obtained if the perturbation spectrum extends
N ~ 700 e-folds beyond the Hubble radius. Since
the present Hubble radius corresponds to a scale that
crossed the Hubble radius about 60 e-folds before the
end of inflation, if inflation lasted more than ~ 700
e-folds with a super-Hubble-radius spectral index of
ns = 0.94, then the effect of super-Hubble-radius per-
turbations on the locally observed value of the decel-
eration parameter would be sizeable.

What are the practical implications of our find-
ings? What observations tell us is that the Universe
is presently undergoing a phase of accelerated expan-
sion, ¢.e. that the deceleration parameter is negative.
Indeed, the unexpected faintness of high-redshift Type
Ta supernovae (SNe Ia), as measured by two indepen-
dent teams [1], has been interpreted as evidence that
the expansion of the Universe is accelerating. In an
unperturbed FRW Universe, the deceleration parame-
ter is uniquely determined by the relative densities of
the various fluids with their own equation of state

1 3
=-0 — ; Q; 4
% =3 0+2% w; $4;, (45)

where )y is the present-day total energy density pa-
rameter and (); are the relative contributions of the
various components with equation of state w; = P;/p;
(P and p are the pressure and energy density, respec-
tively). Therefore, the observation of a negative value
of the deceleration parameter seems to call for the
presence of a “Dark Energy” component with nega-
tive equation of state [14] and abundance Qa ~ 0.7.

The need of a mysterious Dark Energy fluid seems
to be challenged once a realistic perturbed Universe
is considered. Our results show that the theoretical
predictions for the local Hubble rate and the decel-
eration parameter are affected by a cosmic variance
whose size may be large, depending upon the value of
the spectral index and the overall duration of inflation.
Suppose, as we have done so far, that the Universe is
globally flat and matter-dominated with Q3 ~ 0.3
and the background value go = + > 0. Because of the
large variance, however, the true locally-determined
value of the deceleration parameter has non-zero prob-
ability of being less than zero! In other words, in a
perturbed Universe, acceleration might not imply the
existence of Dark Energy. Fig. 1 gives a qualitative
sketch of the effect of the cosmic variance predicted
in our talk as far as the magnitude—redshift relation
is concerned: the theoretical prediction in a matter-
dominated model is not a single well-defined curve,
but instead is represented by a finite region whose
size is determined by the cosmic variance.

5. Conclusions and comments

Let us close with some comments. First of all,
let us notice that in a perturbed Universe the the-
ory is unable to provide the expected value of the
Hubble constant (35) and deceleration parameter (36)
since they depend upon the “bare” unobservable Hub-
ble constant Hg. Therefore, in order to compute
the probability that a typical observer measures val-
ues of the Hubble constant and deceleration param-
eter in agreement with the observations, a complete
procedure would require marginalizing over the bare
Hubble constant Hy with some physical prior. How-
ever, predicting a large variance for the deceleration
parameter can be already regarded as an indication
that the tree-level value gy = % may not be in con-
flict with observing a locally accelerating Universe.
A large variance does not imply the breakdown of
perturbation theory either. Indeed, the density con-
trast 6p/p ~ (pV?p/a?H?) (valid in the synchronous
gauge for all scales) is at most of order unity. We have
checked that a nonperturbative approach — along the
lines of Ref. [13] — leads to similar conclusions and
that pV2y is in fact the first term of the expansion of
e V2 [16]. To get a physical intuition of the rea-
son why there is a large contribution to the variance of
the deceleration parameter one might think in terms



0006

22nd Texas Symposium on Relativistic Astrophysics at Sanford University, Dec. 13-17, 2004

03| % P
/
—
—/—
’/ |
//
// ——————
e Sl N 1
~~ ]
AN
\\\\
SO~ ]
S o ~—
~ ~
S ~
\\ \
\ T |
~ o -
0 0.2 0.4 0.6 0.8 1
Z

Figure 1: The residual Hubble diagram with respect to an empty Universe for a collection of type Ia Supernovae taken
from Ref. [21]. The apparent magnitude m and the absolute magnitude M are related to the luminosity distance by
the relation (m — M) = —5+ 5log,, dr(pc). The red long-dashed line corresponds to go = 1/2 for a flat
matter-dominated Universe (up to O(z®) terms); the blue dot-dashed lines correspond to the values ¢ = go £ 1, i.e. to
the possible size of the cosmic variance band expected in a perturbed Universe; the orange short-dashed line
corresponds to the prediction of the flat matter-dominated unperturbed Universe and the short-dashed purple line to a

flat unperturbed Universe with Q4 = 0.7 and Q» = 0.3.

of the energy density contrast. Indeed, a large vari-
ance of the ¢V?¢ term implies a large variance of dp/p
when summing up every Fourier mode of the pertur-
bations. Such a variance is dominated by the infrared
part of the spectrum and consequently is seen by an
observer restricted to a region of size comparable to
the present-day Hubble radius as a classical energy
density background. Such interpretation is however
not entirely correct because we are dealing with vari-
ances and not with averages of the physical observ-
ables. When inspecting the left-hand side of Einstein
equations, one may regard the contribution from the
first- and second-order gravitational potentials as ki-
netic energy of the gravitational field. Bringing them
to the right-hand side and upon averaging, one may
think of such terms as contributing to the classical
energy density. However, this reasoning does not di-
rectly apply to variances.

Instead of performing an angular average over the
solid angle, we might have determined the expected
values and variances of the Hubble rate and the de-
celeration parameter as a function of the direction of
observation. However, since the variance is dominated
by the infrared part of the spectrum, we expect that
the local anisotropies of the variance are as small as
(V2p/a®3?).

Finally, one should extend our computation to val-
ues of the physical redshift larger than unity. Indeed,

another, albeit indirect, evidence of the presence of a
Dark Energy fluid, is the measurement of the location
of the first Doppler peak of the CMB anisotropies.
Since the theoretical prediction for such a location
depends, in an unperturbed Universe, on the total
energy density parameter (g, from its measurement
one may infer that g is very close to unity. Since
Dark Matter amounts to only 30% of the critical en-
ergy density, it is concluded that a consistent fraction
of the energy density of the Universe is made of Dark
Energy. However, this deduction holds in an unper-
turbed Universe only. On the contrary, one should
compute the location of the first Doppler peak in a
real perturbed Universe. This amounts to computing
the angular diameter distance d4 subtended by the
sound horizon on the last scattering surface. How-
ever, since the angular diameter distance is related
to the luminosity distance by the reciprocity relation
da = dr/(1+2)? at any order in perturbation theory,
it suffices to determine the luminosity distance. The
expression (24) for the luminosity distance-redshift
relation holds for any redshift and any direction of
observation and is therefore suitable to perform such
a task. Furthermore, extending our computation (for
instance to higher redshift) is required to compare the
theoretical predictions of a real perturbed Universe to
other physical observables supporting the Dark En-
ergy picture in the unperturbed cosmology, such as
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the Integrated Sachs-Wolfe (ISW) effect and the tran-
sition from the decelerating to the accelerating phase
at redshifts of order unity [16]. In this respect we no-
tice that the contribution to the variance of physical

Var|(q) . .
observables, as M, increases with time and

therefore both the ISW effect and the transition from
the decelerating to the accelerating phase might well
be consistent with a perturbed flat matter-dominated
Universe. We also point out that the generic expres-
sion (?7) may be used to estimate the influence of lens-
ing on the brightness of supernovae sources. Finally,
let us reiterate once more that a deeper understanding
of the physical significance of long wavelength pertur-
bations is certainly needed.
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