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We describe a statistical hypothesis test for the presence of a signal. The test allows the researcher to fix the
signal location and/or width a priori, or perform a search to find the signal region that maximizes the signal.
The background rate and/or distribution can be known or might be estimated from the data. Cuts can be used
to bring out the signal.

1. INTRODUCTION

Setting limits for new particles or decay modes has
been an active research area for many years. In high
energy physics it received renewed interest with the
unified method by Feldman and Cousins [1]. Giunti
[2] and Roe and Woodroofe [3] gave variations of the
unified method, trying to resolve an apparent anomaly
when there are fewer events in the signal region than
expected. They all discuss the problem of setting lim-
its for the case of a known background rate. The
case of an unknown background rate was discussed in
a conference talk by Feldman [4] and a method for
handling this case was developed by Rolke and López
[5]. Little work has been done though on the ques-
tion of claiming a discovery. This problem could be
handled by finding a confidence interval and claiming
a discovery if the lower limit is positive. Instead the
question of a discovery should be done separately, by
performing a hypothesis test with the null hypothesis
Ho:”There is no signal present”. Rejecting this hy-
pothesis will then lead to a claim for a new discovery.
In carrying out a hypothesis test one needs to decide
on the type I error probability α, the probability of
falsely rejecting the null hypothesis. This is of course
equivalent to the major mistake to be guarded against,
namely that of falsely claiming a discovery.

In practice a hypothesis test is often carried out
by finding the p-value. This is the probability that
an identical experiment will yield a result as extreme
(with respect to the null hypothesis) or even more so
given that the null hypothesis is true. Then if p < α

we reject H0; otherwise we fail to do so. For the test
discussed here it is not possible to compute the p-value
analytically, and therefore we will find the p-value via
Monte Carlo.

Maybe the most important decision in carrying out
a hypothesis test is the choice of α, or what we might
call the discovery threshold. As we shall see, this de-
cision is made much easier by the method described
here because we will need only one threshold, regard-
less of how the analysis was done. What a proper
discovery threshold should be in high energy physics
is a question outside the scope of this paper, although
we might suggest α = 0.001 (roughly equivalent to
3σ). Sinervo [6] argues for a much stricter standard

of 5σ, or α = 2.9∗10−7. We believe that such extreme
values were used in the past because it was felt that
the calculated p values were biased downward by the
analysis process, and a small α was needed in order
to compensate for any unwittingly introduced biases.
If we were to trust that our p-value is in fact correct,
a 1 in 1000 error rate should to be acceptable.

A general introduction to hypothesis testing with
applications to high energy physics is given in Sinervo
[6]. A classic reference for the theory of hypothesis
testing is Lehmann [7].

2. THE SIGNAL TEST

Our test uses T = x − b or T = x − y/τ as the
test statistic, depending on whether the background
rate b is assumed to be known or not. Here x is the
number of observations in the signal region, y is the
number of observations in the background region and
τ is the probability that a background event falls into
the background region divided by the probability that
it falls into the signal region. Therefore y/τ is the
estimated background in the signal region and x−y/τ

is an estimate for the signal rate λ. T is the maximum
likelihood estimator of λ, and it is the quantity used in
Feldman and Cousins [1] without being set to 0 when
x−y/τ is negative. This is not necessary here because
a negative value of x−y/τ will clearly lead to a failure
to reject H0.

Other choices for the test statistic are of course pos-
sible. For example, a measure for the size of a signal
that is often used in high energy physics is S/

√
b. Un-

der the null hypothesis this statistic is approximately
Gaussian, at least if there is sufficient data. Unfor-
tunately the approximation is not sufficiently good
in the extreme tails where a new discovery is made,
leading to p-values that are much smaller than is war-
ranted. Even when using Monte Carlo to compute the
true p-value, this test statistic can be shown to be in-
ferior to the one proposed in our method because it
has consistently lower power, that is its probability of
detecting a real signal is smaller.

In order to find the p-value of the test we need to
know the null distribution. In the simplest case of
a known background rate and everything else fixed
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this is given by the Poisson distribution, but in all
other cases it is not possible to compute the null dis-
tribution analytically, and we will therefore find it via
Monte Carlo. As an illustration consider the follow-
ing case shown in figure 1: here we have 100 events on
the interval [0, 1], with the signal region a priori set
to be [0.44, 0.56]. There are 25 events in the signal re-
gion, and the background distribution is known to be
flat. Therefore we find x = 25, y = 75, τ = 7.33 and
T = 14.77. Because we know that the background is
flat on [0, 1], and because under the null hypothesis
all 100 events are background we can simulate this
experiment by drawing 100 observations from a uni-
form distribution on [0, 1] and computing T for this
Monte Carlo data set. Repeating this 150000 times
we find the histogram of Monte Carlo T values shown
in figure 2, case 1. In this simulation 8 of the 150000
simulation runs had a value of T greater than 14.77,
or p = 0.000053. Using α = 0.0001 we would therefore
reject the null hypothesis and claim a discovery. Note
that in addition to rejecting the null hypothesis we
can also turn the p-value into a significance by using
the Gaussian distribution and claim that this signal is
a 3.87σ effect.

How would things change if the signal region had
not been fixed a priori but instead was found by
searching through all signal regions centered at 0.5
and we would have accepted any signal with a width
between 0.01 and 0.2? That is if we had kept the
signal location fixed but find the signal width that
maximizes T , the estimate of the number of signal
events? Again we can find the null distribution via
Monte Carlo, repeating the exact analysis for each
simulation run individually. The histogram of T val-
ues for this case is shown in figure 2, case 2. Here
we find a value of T larger than 14.77 in 570 of the
150000 runs for a p-value of 0.0038 or 2.67σ. At a
discovery threshold of α = 0.001 we would therefore
not find this signal significant anymore.

Even more, what if we also let the signal location
vary, say anywhere in [0.2, 0.8]? That is for any pair of
values (L, H) we define [L, H] as the signal region and
[0, L), (H, 1] as the background region, compute TL,H

for this pair and then maximize over all possible values
of L and H. Note that because TL,H is monotonically
increasing in τ as long as all the observations stay
either in the signal or in the background region, we can
find the maximum fairly quickly by letting L and H be
the actual observations. The histogram of TL,H values
for this case is shown in figure 2, case 3. We find a
value of T larger than 14.77 in 9750 of the 150000 runs
for a p-value of 0.065 or 1.51σ, clearly not significant.

It was necessary in the second and third cases above
to limit the search region somewhat, to the interval
[0.2, 0.8] and to signals at least 0.01 and at most 0.2
wide, because otherwise the largest value of T is al-
most always found for a very wide signal region, even
when a clear narrow signal is present. This restriction

will not induce a bias as long as the decision on where
to search are made a priori.

In the general situation where the background is not
flat on [0, 1] we can make use of the probability inte-
gral transform. Of course this requires knowledge of
the background distribution F , but if it is not known
we can estimate it from the data, either using a para-
metric function fitted to the data or even using a non-
parametric density estimator. Again all calculations
are done under the null hypothesis so we do not need
to worry about the signal or its distribution.

As long as we copy exactly for the Monte Carlo
events what was done for the real data we will find
the correct p-value. This includes using cuts used to
improve the signal to noise ratio, but it then requires
the ability to correctly Monte Carlo all the variables
used for cutting, including their correlations.

3. PERFORMANCE OF THE METHOD

As an illustration for the performance of the signal
test consider the following experiment: we generate
100 events from a linear background on [3, 5] and (if
present) a Gaussian signal at 3.9 with a width of 0.05.
Then we find the signal through a variety of situations,
from the one extreme where everything is fixed a priori
to the other where the largest signal of any width is
found. The background density is found by fitting and
the background rate is estimated. The power curves
are shown in figure 3. No matter what combination
of items were fixed a priori or were used to maximize
the test statistic, and with it the signal to noise ratio,
all cases achieved the desired type I error probability,
α = 0.05. Not surprisingly the more items are fixed a
priori, the better the power of the test.

4. CONCLUSION

We have described a statistical hypothesis test for
the presence of a signal. Our test is conceptually sim-
ple and very flexible, allowing the researcher a wide
variety of choices during the analysis stage. It will
yield the correct type I error probability as long as the
Monte Carlo used to find the null distribution exactly
mirrors the steps taken for the data. Monte Carlo
studies have shown that this method has satisfactory
power.
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Figure 1: 100 Events on [0,1], with the signal region a priori set to be [0.44, 0.56]. There are 25 events in the signal

region, and the background distribution is assumed to flat.
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Figure 2: Histograms of T values of Monte Carlo simulation.
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Figure 3: Power curves for 10 different cases such as signal location fixed a priori or not, same for signal width,

background estimated or ect. alpha=0.05 is used.
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