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ABSTRACT

These lectures will attempt to convey the excitement and promise in

studies of the microwave radiation left over from the early universe.

They are aimed at an audience of experimental high energy physicists.

The first lecture will concentrate on how the radiation is charac-

terized, how it and its anisotropies are generated, and the physics that

it reveals.

The second lecture will concentrate on the techniques that are used

in experiments, addressing the question of how such small signals can

be detected so precisely in a regime of extremely low signal-to-noise.

The third and final lecture will present the main thrusts in this

field as foreseen for the coming decade.
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1 Introduction

By studying the Cosmic Microwave Background Radiation field, cosmologists are

uncovering extraordinary information about the early universe. Cosmology is in

a very exciting and data-driven stage right now and arguably studies of the CMB

have been the most fruitful.

These lectures will attempt to convey the excitement and promise to high

energy physics experimentalists. The emphasis will be on experiment: how mea-

surements are made and by what techniques. We will also need to understand

some of the basic concepts to fully appreciate the science. The presentation will

be more pedagogical than inclusive, as appropriate for the classroom. In particu-

lar, I apologize in advance to my new colleagues for an incomplete reference list,

hoping that they will remember when they were first learning the subject.

Several people have been of great help in the preparation of these lectures;

their names are given in the acknowledgments.

2 Lecture 1

We begin with a discussion of the very early stages of this field. We discuss the

origins of the radiation, its black-body nature, how its anisotropies are generated

and characterized, and how the hypothesis of Inflation accounts for the observed

regularities. We close this section with a summary of the physics addressed by

the CMB, using the recent WMAP results as the best example.

2.1 The Early Years

As is well known, the radiation was discovered in 1965 by A.A. Penzias and

R.W. Wilson. It was a serendipitous discovery: the scientists were not explicitly

looking for extragalactic radiation, let alone radiation of such import, but rather

were led to the unavoidable conclusion that there was an isotropic source of “noise”

in their detectors coming from the cosmos.

Figure 1 shows a rough plot of the number of articles published per year

since the initial discovery. Today there are approximately 150 experimentalists

working in this area. WMAP is having a great influence on the field: most of the

publications in 2003 treat WMAP data in one form or another. It is interesting
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Figure 1: Approximate Number of Papers on the CMB per Year

to note that this publication profile is similar to that for papers published on CP

Violation.

The first measurement was made at a wavelength of approximately 10 cm.

The reported temperature was:

T = (3.5± 1)K. (1)

This measurement was way off the peak of the radiation which is more like 3 mm.

This points out an important feature of the spectrum of black body radiation:

if you know the flux at any known frequency, that determines the temperature

of the radiation field. Figure 2 gives the flux of detected radiation (in watts per

square meter per Hz per steradian) vs. wavelength for a variety of temperatures,

nicely displaying the linear increase in detected radiation vs. temperature at low

frequencies (the Raleigh-Jeans part of the spectrum) and the displacement of the

peak to higher frequencies as the temperature increases.

Initially it was thought that the radiation might be reemission of star light by

interstellar dust; this was ruled out by studies of the spectrum. Another possibility

was that it was emission from radio galaxies but this hypothesis was discarded

because it was known that there were not enough of these galaxies to reproduce

the smoothness of the radiation.
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Figure 2: The Black Body Spectrum. Shown is the flux distribution for

1K, 10K, 100K, ... to 1010K. The Measured Flux at any temperature uniquely

determines the temperature. (Plot courtesy of M. Hedman)

Key in the interpretation was whether the radiation indeed was isotropic and

whether it really followed a blackbody spectrum. By 1967, Partridge and Wilkin-

son had shown over large regions of the sky, that:

∆T

T
= (1− 3)× 10−3. (2)

In 1967 a Princeton group made the first measurement at a different frequency;

this was crucial in verifying the black body nature of the radiation. Figure 3 shows

the two measurements on top of the expected curve. Also shown are measurements

of the galactic background at several different wavelengths, showing that it has a

very different spectral index from that for a black body.

Another important “confirmation” came from a study of the pattern of ab-

sorption lines in interstellar CN molecules. It turns out that there are a pair of

low-lying rotational states of this molecule. The first is excited with 2.64 mm ra-

diation and the second can be reached from the first state with 1.32 mm radiation.

From the observed relative population of these states, it was determined that the

molecules were bathed in a sea of radiation with a temperature of

T = (3.05± 0.35)K. (3)
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Figure 3: The First Confirmation at 3 cm. The flux from the original mea-

surement together with the first confirmation at 3 cm are shown. Also shown are

measurements of the galactic foreground (which was then called a “background”),

showing its different (non-black body) spectral shape. (Figure from ref.1)

This was a most remarkable result for at least two reasons: is showed for the first

time that this new radiation extended beyond the solar system; and this discovery

was made in 1941!

Today’s spectral information on the CMB is shown in figure 4. The short

wave-length measurements are dominated by the FIRAS instrument on the COBE

satellite- the errors on these points are FAR smaller than the points themselves.

Many other measurements at longer wavelengths contribute to making this the

most accurately measured blackbody.

2.2 The Origin of the Radiation

The radiation we see today came from an era when the Universe was hot. When

it had a temperature T > 13ev, protons, electrons and photons were the main

constituents of a plasma in equilibrium; the expansion of the universe cooled the

plasma to where hydrogen atoms formed (called the era of recombination, even

though the atomic constituents had never been combined prior).

The parameters of this era are the following:
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The CMB Spectrum Today

Figure 4: The Planck Spectrum of the CMB.

• T ≈ 300K ≈ 0.3 ev

• z = 1088± 2

• δz = 195± 2

• t = (379± 8)KY

• Ttoday = 2.728K

The photons that we see today were then emitted when the universe was some

1100 times smaller than today, from a “surface” with a thickness of about 20%,

about 380 thousand years after the Big-Bang. The (impressively small) errors on

the values are taken from the recent WMAP results.

Except for second order effects (to be discussed in the 3rd lecture), photons

come to us from this surface of last scattering with no further interactions, save

the red-shifting due to the expansion. As such they provide an important and

unique view of the universe at a well defined time, indeed the earliest such time.

It isn’t immediately obvious how a view of the Universe, even a very precise view,

when it had a temperature as less than 1 ev can yield unique information about

its origins, or at least its properties when the particle energies were far greater.
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Other “relics” come from substantially earlier eras. Neutrinos, because of their

much lower cross-section, decoupled minutes after the Big-Bang but the prospects

for their detection is slim. And the protons in our bones were first created at an

even much earlier era but have had an extremely complicated history so that only

their abundance hints at anything “primordial.”

2.3 Why (and how good) a Black Body?

An important question is why the radiation we see today is so precisely thermal

and how well we can limit non-thermal contributions.

Before (re)combination, Thomson scattering dominates the interactions be-

tween the electrons and photons. This (elastic) process will change photon direc-

tions but not the number of photons. The latter needs to change when there is

a non-thermal distribution of injected energy but Thomson scattering can not be

responsible for the restoration of equilibrium when, for example, e+e− annihilation

occurred at z ≈ 109.

The relevant processes that do change photon number are Bremstrahhlung and

Compton scattering; these processes would take an essentially arbitrary spectrum

at z ≈ 106 and thermalize it. When there is not enough “time” for photon

numbers to shift, the spectrum looks like a black-body but with a linear shift to

higher frequencies. The fractional shift is parameterized by the variable y.

The photon number distribution for a pure blackbody (the Planck distribution)

is governed by the factor:
1

e
hν
kT

−1
(4)

whereas the number density for particles in “kinetic equilibrium”, where there are

no processes changing the number of photons (the Bose-Einstein distribution), is

governed by the factor:
1

e
hν
kT

+µ − 1
(5)

where µ is the chemical potential.

The spectrum shown in figure 4 fits a blackbody with residuals less than 50

ppm. The corresponding limits on the spectral distortions are:

y < 15× 10−6 (6)

and

| µ |< 9× 10−5. (7)
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For an energy release ∆U with 105 < z < 3×106, a Planck Spectrum becomes

Bose-Einstein and from the limit on the size of the chemical potential the limit2

for energy injection during this era is:

∆U

U
= 0.7µ. (8)

while an energy release with z < 105 causes a spectral shift and:

∆U

U
= 4y. (9)

Thus the purity of the black body spectrum lends great confidence that no

unusual or unexpected energy injections, at the level of a few ×10−5 of the total

energy in the photons occurred later than z ≈ 106 or later than a few months

after the Big-Bang.

2.4 Anisotropies

From the very beginning, cosmologists began searching for anisotropies in the

background radiation: were the radiation pattern, and therefore the associated

matter density, precisely uniform, then it would have been difficult to explain the

origin of the obvious anisotropy in the matter distribution today.

Technically the first anisotropy was seen in the late 1970’s, that arising from

the motion of the sun through the microwave radiation field, creating a dipole

of magnitude 10−3. But the true (primordial) anisotropy was detected first by

the COBE satellite in 1992. The detector had a “beam” of 7 degrees so the

anisotropies could only be detected on scales larger than this. Regions this far

separated were never in causal contact with each other, at least in the standard

big-bang model so the detected anisotropies, of the order of 10−5 or 30µK, need

to be considered as “initial” conditions.

Figure 5 shows the path of the radiation since decoupling, indicating that the

causal horizon is of order 20.

Jumping to the present, the recent map of the radiation field by the WMAP

satellite is shown in Figure 6. This is a beautiful achievement, the precise whole-

sky determination of the temperature with a spatial resolution of about 0.30.

2.4.1 Characterization of the Temperature Field

Cosmologists have developed techniques for characterizing the temperature field

which we will now describe. First, let’s denote the temperature T at the surface
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Figure 5: Schematic of the path of the CMB. In the Big-Bang (pre-

inflationary) model, patches of the CMB sky observed today that are more than

about 20 apart were never in causal contact.

FIG. 1. The linearly cleaned WMAP team map (top), our Wiener filtered map (middle) and our raw map (bottom).

2

Figure 6: The WMAP Map of the CMB Sky. The temperature scale spans

±200µK.
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of last scattering in direction n̂ by its deviation from the average:

Θ(n̂) =
∆T

T
. (10)

Next, we can consider the multi-pole decomposition of this temperature field:

Θlm =
∫

Θ(n̂)Y ∗
lm(n̂)d(n̂). (11)

Finally we can define the “power spectrum” of the radiation field, which repre-

sents the strength of the radiation field vs. multi-pole. If the sky temperature field

arises from Gaussian random fluctuations (as the inflationary paradigm predicts),

then:

〈Θ∗
lmΘlm〉 = δll′δmm′Cl. (12)

Under these conditions, the best estimate of Cl is the square of the width of

the power in the (2l + 1) samples of this multi-pole of the temperature field.

Because there are only the (2l + 1) modes with which to detect the power

at multi-pole l, there is a fundamental limit beyond which the power cannot be

better determined; this is known as the cosmic variance:

∆Cl

Cl

=

√
2

2l + 1
(13)

For historical reasons, the quantity that is usually plotted is:

∆2
T ≡

l(l + 1)

2π
ClT

2
cmb (14)

This is the variance (or power) per logarithmic interval in l; this quantity is

expected to be (nearly) uniform in inflationary models (“scale invariant” fluctua-

tions) and would go like l2 if the “noise” on the sky were pure “white”.

The power spectrum derived from the map in figure 6 is then shown in figure

7. WMAP data extends up to an l of about 700; two other recent results with

smaller beams and therefore higher l reach are also shown in the figure.

In the figure the region below l ≈ 50 is that of “initial conditions” which we

have already discussed; at higher l values there are “acoustic oscillations”. We

will now discuss this mechanism which is responsible for the large enhancements

over the basic level of fluctuations in the figure.
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Figure 7: The Multi-pole Power Spectrum Derived from WMAP Data.

The upper plot shows the power spectrum of the temperature field while the lower

one shows that for the correlated temperature-polarization fields. High-l points

from the CBI and ACBAR experiments are also shown together with the best

model fit to the WMAP data. (Polarization will be treated in lecture 3.)
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2.5 Acoustic Oscillations

The standard picture of the early universe is that the “initial conditions” were a

very smooth and flat universe with very small initial inhomogeneities. These are

small over-densities in dark matter, protons, electrons, neutrinos, and photons

where each component has exactly the same distribution. Such conditions are

called “adiabatic.”

The regions with more density can attract further mass and grow but only

when enough time has passed that the surrounding region becomes aware of the

over-density, i.e., in the language of the cosmologists, when the surrounding region

comes into or crosses the horizon.

As already mentioned, the horizon at decoupling corresponds today to about

20 on the sky. Regions smaller than this would have had time to compress while

those larger would not. For sufficiently small regions, the photon pressure that

builds up with compression would have reversed the compression and the region

would then expand. This sets up an oscillation process: the relativistic fluid

of photons is coupled to the electrons via Thomson scattering, and the protons

follow the electrons to keep a charge balance. At decoupling, one is presented

with a snap-shot of the state of the fluid at that time. (A excellent pedagogical

description of the oscillations can be found at.3)

At the time of decoupling, perturbations of particular sizes may have under-

gone: one compression; one compression and one rarefaction; one compression,

one rarefaction, and one compression; etc. These particular regions will exhibit

extrema in the power-spectrum.

To put this in a slightly formal context, consider a standing wave on the sky

with a frequency ω and wave number k. The wave displacement w can then be

written:

w(x, t) ∝ sin(kx) cos(ωt) (15)

The displacement will be maximal when t = 0, λ
2vsound

, λ
vsound

, . . .. There will then

be a series of frozen peaks (and valleys) at t=trec which will depend on the velocity

of sound in the medium.

To help explain these ideas, I’ve borrowed a few frames from an animation

created by Wayne Hu. Figure 8 shows a density fluctuation on the sky from a

single mode in k-space and how it is “detected” with time. The wave-length of

this mode can be taken to be roughly the sound horizon at decoupling.
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The figure shows the “particle horizon” just after decoupling. This represents

the farthest distance one could in principle “see” or detect anything; it is effectively

the age of the universe times the speed of light. No one living at the center of the

figure could by any means have knowledge of anything outside this region.

Of course, just after decoupling, one could “see” a far shorter distance: light

can only then propagate freely so one would not have received any photons from

any appreciable distance.

The subsequent frames show the pattern “detected” at later times: at first one

sees a dipole, this when photons can travel the scale of the excited mode; later

one would see a quadrupole, then an octupole, etc., until the present time when

that single mode in density inhomogeneities creates very high multi-poles in the

temperature anisotropy.

Figure 8: The Signature of One “Frozen” Mode after Decoupling. These

illustrations (from W. Hu) show, left to right, top to bottom: one mode in tem-

perature just after decoupling with the observer where the arrow is pointing; the

observer’s particle horizon at this time, when only the monopole can be detected;

some time later the quadrupole is first seen; even later the quadrupole is well de-

tected; much later the octupole is detected; and “today” a very high, well aligned

multi-pole, from just this single mode in k-space, is detected.
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2.6 The Idea of Inflation

The boldness in the idea of inflation can be expressed as follows: at the time shown

in figure 8 top-middle, no one could have any knowledge of fluctuations outside

the particle horizon. However, a smart theorist at the time could predict that

the observed dipole pattern would become progressively more complex as time

evolves, knowing about the existence of peaks and troughs of this mode outside

the particle horizon.

Our universe could have begun as in figure 8: only one highly oriented mode

as its initial condition. This would have, at least, led to a very different WMAP

result! But it seems that the initial conditions were rather all k-modes equally

excited in all directions, where “equally” means drawn from the same Gaussian

random distribution.

Inflation is a mechanism whereby these fluctuations are created without vio-

lating causality, behaving as effectively initial conditions. There seems not to be

a better candidate mechanism to explain the observed regularities. Nevertheless,

Wolfgang Pauli’s famous statement about the neutrino comes to mind:

I have done a terrible thing: I have postulated a particle that cannot

be detected!”

Sometimes it seems that Inflation is an idea that cannot be tested, or incisively

tested. Of course Pauli’s neutrino hypothesis did become testable and it tested

positive, and similarly there is hope that the idea of inflation can reach the same

footing. As a note of caution, however, let’s remember that we have not (yet)

seen any scalar field in nature. In the third lecture, we’ll discuss what has been

claimed as the smoking-gun test of Inflation- the detection of gravity waves in the

CMB- but even so, will we ever say with certainty that the Universe grew by 1063

in volume in just 10−35 seconds?

2.7 What we learn from the WMAP Power Spectrum

The WMAP team has used its data to report on the following features of the

Universe:

• Its Geometry

• The spectral “tilt” to the power spectrum

• Its Matter Content
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• Its Baryon Content

This information is determined from the structure in the peaks observed and here

we will try to give a feeling for how this comes about. For this discussion we are

guided by reference.4

2.7.1 The Geometry of the Universe

As we have discussed, the angular scale of the peaks ΘA is set by the (co-moving)

sound horizon at decoupling, rS, divided by the relevant distance to the surface

of last scattering, dA:

ΘA =
rS(zdec)

dA(zdec)
(16)

The quantity dA, the “angular diameter distance” is that distance that properly

takes into account the expansion history of the Universe so that when it is mul-

tiplied by an observed angle, the result is the feature size. In a non-expanding

universe, this would simply be the physical distance. The expression depends on

the content of the Universe. For a flat Universe, we have:

dA =
∫ zdec

0

H−1
0 dz√

Ωr(1 + z)4 + Ωm(1 + z)3 + ΩΛ

(17)

In this expression, H0 is today’s value of the Hubble constant and Ωr,m,Λ is the

fraction of critical density in radiation, matter, and cosmological constant, respec-

tively. It is easy to see how the dilution of the different components with red-shift

z enters the expression for the angular diameter distance.

WMAP measures

ΘA = (0.601± 0.005)0. (18)

Completely within the WMAP data, there is a “geometrical degeneracy” between

Ωk, a contribution to the critical density from the curvature of space, and Ωm.

Taking a very weak prior of h > 0.5, they then determine that Ωk = 0.03± 0.03,

i.e. no evidence for curvature. They then assume Ωk = 0 for subsequent analysis.

2.7.2 Fitting for Spectral Tilt, Matter and Baryon content

It is easy, in principle, to see how one determines the spectral tilt: if one knew all

the other parameters, then the tilt would simply be the slope of the power spec-

trum after the removal of the contributions from the other parameters. However,

as should be clear, there is a coupling between all of the parameters.
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Let us first look at the ratio of the 2nd to the 1st peak, denoted (by the WMAP

team) by HTT
2 . The value reported is HTT

2 = 0.426± 0.015 and its uncertainty, in

terms of that on the parameters of interest, is given by:

∆HTT
2 = 0.88∆nS − 0.67

∆ωb

ωb

+ 0.39
∆ωm

ωm

(19)

Here the ω parameters are the physical densities.

It is often said that the ratio of the first two peaks gives the baryon density.

This is of course true if one assumes that there is no tilt and one takes ωm from

elsewhere. The baryons can be considered as extra loading to the oscillations; if

their density increases, the second peak is less intense. But it is clear that the

(cold dark) matter density also contributes as does the spectral tilt.

These latter two parameters are determined by looking at the ratio of the 3rd

to the first peak (HTT
3 = 0.42± 0.08), for which data outside of WMAP is used;

and the ratio of the 1st to the second peak in the polarization-temperature cross

correlation power spectrum (HTE
3 = 0.33± 0.10). ∗

The uncertainties in these quantities, in terms of the uncertainties in the pa-

rameters, are:

∆HTT
3 = 1.28∆nS − 0.39

∆ωb

ωb

+ 0.46
∆ωm

ωm

(20)

and

∆HTE
3 = −0.66∆nS + 0.095

∆ωb

ωb

+ 0.45
∆ωm

ωm

(21)

The baryon density has little influence on the ratio of the TE peaks but other-

wise it is clear that the three parameters are quite important in the three measured

peak ratios. A simultaneous fit to the three results in the following values:

We have also included the overall amplitude of the power spectrum and the

optical depth, determined from the discovery of the era of re-ionization which will

be mentioned in Lecture 3.

2.8 Summary: Temperature Anisotropies

The WMAP data set has taught us much about the Universe. While the overall

conclusions from the analysis of the peak structure are not dramatically different

from those drawn from a collection of earlier ground- and balloon-based experi-

ments, WMAP has put the reigning cosmological model on much stronger footing.

∗We will discuss polarization measurements in lecture 3.
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Table 1: Cosmological Parameters from WMAP

Baryon Density Ωbh
2 0.024± 0.001

Matter Density Ωmh2 0.14± 0.02

Hubble Constant h 0.72± 0.05

Amplitude A 0.9± 0.1

Optical Depth τ 0.166+0.076
−0.071

Spectral Index nS 0.99± 0.04

Prior to WMAP, only two experiments claimed systematic errors on the spectral

power less than 10%; WMAPs errors are less than 0.5%. The overall amplitude

is strongly affected by the reionization, changing previous values by of order 30%.

And with full-sky coverage, WMAP could determine the power spectrum in indi-

vidual l-bins with negligible correlations.

The χ2 for the grand fit is 1431 for 1342 degrees of freedom. The fluctuations

by all tests appear to be derived from Gaussian distributions. Yet the probability

to exceed this value is less than 5% so, as a result, some thoughts have arisen as

to possible effects that, if present, would provide a better fit. Allowing the tilt

parameter nS to “run” does reduce the χ2. Perhaps more significantly, WMAP

confirms the COBE observation of unexpectedly low power in the lowest multi-

poles. The WMAP team claims this is an effect way beyond statistics but there is

a lively literature on the subject. Figure 9 shows the lowest 3 multi-poles where

not only is it clear that the quadrupole has little power, it appears to be “aligned”

with the octupole! But the situation is murky in that the quadrupole lines up

reasonably well with the galaxy itself and there is concern that the cut on the

galaxy then reduced the inherent quadrupole power.

We will now leave our survey of present knowledge of the temperature anisotropies

to discuss the techniques used to make these measurements.

3 Lecture 2

In this lecture, we will concentrate on the means for detection of the microwave

radiation. This will include a discussion of the basic elements of radio telescopes,

the different types of receivers, sources of noise, the factors governing the sensitiv-
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Figure 9: WMAP, multi-poles l=2,3,4, from top to bottom.

ities of receivers, observing strategies and trade-offs, and the analysis chain from

raw data to power spectra.

3.1 Radio Telescopes

Consider first an experiment that observes one point on the sky: what is needed

for this? Figure 10 shows R. H. Dicke and colleagues calibrating an early radio

telescope.

What Dicke used (see Figure 11) was:

• An Antenna, with a particular acceptance pattern on the sky (its “beam”)

• An amplifier, which must be low-noise and high bandwidth

• A filter, which selects the frequency band of interest

• a power meter, which squares the electric field, and

• an (essentially DC) amplifier
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Figure 10: R. H. Dicke in the mid 1940s. Here Dicke is holding an absorber

in front of his radio telescope.1

(In this section, we are describing what are called coherent detectors, those that

amplify the electric field. These are the type, for example, used in WMAP. In the

next lecture, we will describe bolometric detectors which immediately turn the

radiation into heat.)

The depiction of an antenna “beam” on the sky is shown in figure 12. It is

useful to invoke the reciprocity of Maxwell’s equations: the acceptance pattern

of an antenna on the sky is precisely that of its radiated power. Because the

microwave radiation has wave-lengths λ in the mm-cm range, ray optics does not

suffice. A typical pattern is a nearly Gaussian beam with a nominal beam solid

angle Ω and a collecting area A. There are inevitably side lobes- the typical

diffraction pattern- to the main beam, some near to the main beam and others far

from it. The intensity in the far side-lobes must be carefully controlled as often

it is aimed at the ground which is at ≈ 300K which could completely dwarf the

anisotropies in the 3K “signal”.

Because we are in the diffraction limit, the more collimated we wish to make

the antenna pattern- to study fine features of the microwave radiation- the larger

we must make its collecting area. The relevant relation is: AΩ = λ2.
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Elements of a Radio Telescope

Antenna

Amplifier low-noise, high bandwidth

Filter selects Dn

Power Meter measures <E2>

Amplifier low frequency (DC)

Figure 11: Simplified Radiometer Diagram

Figure 12: Illustration of a Microwave Beam Pattern.
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3.1.1 What is the CMB flux?

The Planck black-body spectrum is given by:

Bν =
2hν3

c2

1

e
hν
kT − 1

W/m2/str/Hz (22)

Consider a simple horn antenna, not unlike that in figure 10. Using the fol-

lowing parameters:

• central frequency ν0 = 90 GHz

• bandwidth ∆ν = 10 GHz

• beam FWHM = 80

• beam area = 8 cm2 ,

we find that the CMB flux on the horn is just 2.5× 10−13 Watts.

To give a feeling for actual signal levels in an experiment, we note the following:

• typical gain of the front-end (low noise) amplifier is 106

• the transmission factor in the filter is of order 0.4

• the power meter typically gives, for 1µ Watt input, 1 milli-Volt output

• typical gain of the final amplifier is 100

so this leads to a roughly 10mV signal for the 30 incident radiation.

3.2 Heterodyne Receivers

With coherent receivers, one can “mix down” the radio frequency to an interme-

diate frequency (IF). For example, a band from 84 to 100 GHZ, when multiplied

by an 82 GHz local oscillator (LO), is reduced to an IF band from 2-18 GHz. At

these frequencies, signals can be transfered in coax (rather than wave guide) and

important manipulations can be performed as we will see. In addition, amplifiers

are less noisy and less expensive the lower the frequency.

The next few pictures are intended to give the reader an idea of what real

radio receivers and telescopes look like. I use pictures and examples from the

CAPMAP5 experiment.

Figure 13 shows some of the microwave “‘plumbing”. Shown are MMICs,

which provide multistage RF amplification. As in photo-multipliers, the first stage

is the most critical with respect to added noise. Also shown are the RF filters and
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“mixers” in which the RF and LO signals are mixed down to IF frequencies. Other

components of this (polarization) receiver will be explained in the 3rd lecture.

Figure 13: A CAPMAP radiometer. This radiometer detects polarization;

polarization will be treated in Lecture 3

Figure 14 shows power detectors and the final stage of amplification.

Figure 15 shows four receivers in a cryogenic dewar. Inside the metal cans are

the horns; on top of the cans are lenses to match the output of the horns to the

radio telescope, shown in figure 16.

3.3 System Temperature

The sensitivity of a radio receiver depends on what is called its System Tempera-

ture. It turns out it is possible to characterize the noise in a radio receiver as an

effective temperature due to the power coming from it even in the absence of a

true signal. The sensitivity of the receiver is better if the system temperature is

made as small as possible. Here we will describe the 3 major contributions to the

noise (or system temperature) of ground-based radio receivers.
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Figure 14: A CAPMAP IF stage. The module has two coaxial inputs, carrying

2-18 GHz, which are split and correlated to provide 5 outputs.

First we must mention that the language we are using was originally intro-

duced by Bob Dicke in a seminal paper in 1946. Its first page is reproduced

in figure 17. By considering an antenna immersed in a cavity whose walls are

at temperature T, he related the power transmitted down the antenna with the

Johnson (thermal) noise in a resistor to which the antenna is connected. Arguing

from thermodynamic equilibrium, he noted that the power levels going each way

had to be equal when the resistor was held at what he defined as the “antenna

temperature”. In this way, one can treat a source on the sky and the thermal

noise of an amplifier with the same language. In this paper, we will see that he

also derives the fundamental expression for the sensitivity of a radio receiver.

3.3.1 Atmospheric Noise

On the ground, one is looking through an (hopefully stable) atmosphere. The

atmosphere will both absorb incident radiation and emit its own radiation.

These are connected by Kirchoff’s Law. Let’s consider a detector looking at a

source with a temperature TS through a cloud with temperature TC . (See figure
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Figure 15: A CAPMAP Dewar. Four horns are each covered by a lens to match

the radiation pattern onto the telescope. The box containing the IF modules can

be seen on the left.

18) Then the temperature that the detector sees, TD, is given by:

TD = TSe−τ + TC(1− e−τ ) (23)

where τ is the opacity of the cloud.

The table shows some limits to this expression.

In CAPMAP, observing from New Jersey, clouds typically have a temperature

of about 250K and an absorption of about 20%. Thus they attenuate the CMB

signal by 20% and at the same time add a 45K atmospheric noise term. The table

shows that the expression for TD makes sense in the two limits: if the optical

depth of the cloud is zero, the detector sees the source temperature directly while
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Figure 16: The Bell Labs Crawford Hill Radio Telescope Used by

CAPMAP
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Dicke Paper

Figure 17: The Cover Page of Dicke’s Original Paper which Launched

this Field

if it is very large, the detector sees only the cloud temperature.

The atmosphere is not uniformly transparent in the microwave region. Figure

19 shows the absorption of the atmosphere vs. frequency; 90 GHz is a favored

region. The absorption at that frequency is largely governed by water vapor.

3.3.2 Amplifier Noise

For an ideal amplifier, its power generated with no input depends only on its

(physical) temperature T and the frequency ν:

p =
hν

e
hν
kT − 1

dν ⇒ kTdν (24)
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Atmospheric Noise
• The Atmosphere will both absorb incident

radiation and emit its own radiation
• These are connected by Kirchoff’s Law

TS
TC

† 

TD = TSe
-t + TC (1- e-t )

Figure 18: Looking at a Source (S) Through a Cloud (C). TD is the detected

temperature and τ the opacity of the cloud.

Table 2: How the Detected Signal Depends Upon the Optical Depth of a Cloud

Optical Depth τ Detector Signal TD

0 TS

∞ TC

0.2 45K (TC = 250K
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SLAC Summer Institute, Lecture #2

90 GHZ

Figure 19: The Optical Transparency of the Atmosphere. Plotted7 vs.

frequency is the atmospheric height where the radiation is attenuated by 0.5. The

90 GHz region is one where CAPMAP and many other experiments can operate

from the ground.

or kT power per unit band-width, when hν � kT. The state-of-the-art for 90

GHz amplifiers, which operate at Tphysical=10K, is Tnoise = 45K.

3.3.3 Quantum Noise

It is worth mentioning an irreducible noise level to such coherent amplifiers, the

so called “Quantum Limit”.

Here we sketch an argument for the existence of a quantum limit but we warn

the reader that the effect is subtle; for a very complete description of all the

subtleties, see ref.6

We are all familiar with the Energy-time uncertainty relation (consider an

ideal wave packet):

∆E∆t =
h

4π
(25)

SLAC Summer Institute, July 28 - August 8, 2003, Stanford, California

28L04



Now lets relate ∆E, the energy uncertainty, to the uncertainty in the number

of photons:

∆E = hν∆n (26)

and the time uncertainty to that in the phase of the wave:

2πν∆t = ∆Φ. (27)

This then gives a fundamental relation between the uncertainty in the phase of a

wave and in the number of quanta in the wave:

∆Φ∆n =
1

2
. (28)

Considering such an ideal packet at the output of a phase preserving amplifier,

one is led to a contradiction when referred back to the input of the amplifier. The

only resolution to this problem is that the amplifier adds (“quantum”) noise, at

a level kT= hν = 5.5K @ 100GHz.

At 90 GHz, this is still well below the state of the art but at lower frequencies,

coherent amplifiers are fast approaching the quantum limit. This quantum noise

is absent in totally absorbing detectors (bolometers) and this is party why it is

thought that for the ultimate precision, bolometric detectors will likely be the

best choice.

3.4 Receiver Sensitivity

For the situation we have been analyzing, the components of the signal, which

add linearly, are:

• 3K from the CMB

• 45K from atmospheric noise

• 45K from amplifier noise

leading to a total system temperature of about 100K.

Now how do we calculate the sensitivity of a receiver with this temperature?

By sensitivity, we mean the uncertainty in the measurement of the temperature

of a point on the sky. The result is:

∆T =
Tsys√

∆ν × tobs

≈ 0.001K
√

sec (for CAPMAP) (29)
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where ∆ν is the receiver bandwidth and tobs is the observing time.

We will derive this expression but first let’s note that temperature sensitivity

improves linearly with the system temperature but only as the square root of the

bandwidth and the observing time. In a particle search, sensitivity will improve

with the square root of time in a noise dominated regime, which is of course where

we are in cmb detection. We emphasize that in both cases, it is very important

to know (independently) the level of the noise.

We see that, with the system temperature and bandwidth of CAPMAP, each

radiometer can measure a temperature to 1mK in one second. That figure is a

benchmark for cmb radiometers: the WMAP radiometers also had approximately

this sensitivity.

3.4.1 Dicke’s Derivation of Radiometer Sensitivity

Dicke’s original derivation used an argument that will be familiar to particle physi-

cists: it is based on counting statistics.

We can view the signal coming out of a receiver as a pulse train. Our sensitivity

will then be (inversely) proportional to the square root of the number of detected

pulses.

Our ability to resolve pulses close in time depends on the frequency response of

our full system. The greater the bandwidth, the closer we can resolve consecutive

pulses. If ∆ν is the bandwidth of the receiver, then we can see pulses separated

by a time given by 1
∆ν

.

Suppose that our system temperature is 100K and that we want to be sensitive

to a temperature of 1µK; since this is 10−8 of the system temperature, we would

need 1016 counts to see such a temperature shift (at the 1σ level).

With a bandwidth of 10 GHz, we accumulate 1016 counts in 106 seconds, or

about 12 days.

With this simple derivation, one sees clearly how the sensitivity is proportional

to the system temperature and inversely proportional to the square root of both

the observing time and the bandwidth. The great challenge, which we address

later in this lecture, is to keep systematics associated with amplifier drifts, ground

offsets, and atmospheric changes under control during such a large integration

time.
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3.4.2 POOR Signal to Noise!

To emphasize the noise regime in CMB experiments, consider CAPMAP. Take

the radiometer sensitivity to be 1mk in 1 second. CAPMAP samples at 100 Hz

and uses a 24-bit ADC over a 4-Volt range. At 100 Hz, the sample fluctuations

will then be 10mK; and using a gain figure of approximately 10 mV per K, we

see that the temperature corresponding to 1-bit is about 100µK. We don’t get

24 noise-free bits but even so, this is about 100 times the signal we are trying

to detect! Thus the noise dithers the signal so that it becomes detectable. The

author “discovered” this feature when trying to check his code by turning off the

noise.

3.5 Calibration

It is important to be able to calibrate a radiometer in the lab before deployment

and in the field. One can use black bodies of differing temperatures to check the

gain, linearity, and sensitivity of the entire system. In the field, astronomical bod-

ies such as the moon, a few of the planets, and known radio sources are frequently

observed (e.g. daily) to provide relative, and sometimes even absolute, measure-

ments of the system response. Figure 20 shows reconstructed temperatures of

Jupiter with the four initial CAPMAP radiometers. The planets also serve as a

good means to determine and check the pointing of the telescope as well as the

shape of the beams on the sky.

3.6 Astrophysical Foregrounds

Of course measuring a sky temperature does not guarantee a pure CMB detec-

tion: one has to guard against various astrophysical “foregrounds”. These include

galactic emission due to synchrotron radiation of electrons in galactic magnetic

fields, bremstrahhlung radiation of electrons off of atomic nuclei, and emission

from hot dust. These foregrounds can be either minimized or measured using ra-

diometers with multiple frequencies: none of these foregrounds has a black body

spectrum. Also one can choose regions of the sky for observing which previous

surveys indicate are relatively clean of such sources.

There are also extra-galactic sources that one must pay attention to. These

include: known (and unknown) radio galaxies; hot gas in galaxy clusters that
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Figure 20: Jupiter as Observed by Four CAPMAP Radiometers.

interacts with the cmb, effectively boosting its temperature; and the gravitational

lensing of the cmb due to gravitational potential of the intervening matter. Ex-

isting catalogues, good angular resolution, and statistical tests are the techniques

used to control the first two of these effects; the third, gravitational lensing, is the

more subtle and interesting foreground and we will discuss this effect in the 3rd

lecture.

3.7 Instrumental Effects

We list here the most important instrumental challenges in achieving sensitivities

at the parts-per-billion level of the system temperature.

• Amplifier Drifts: These must be controlled to a very high level. We will

describe the technique of “Dicke switching”, universally employed in all cmb

experiments

• Mechanical pickup: Something always moves in cmb experiments: the tele-
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scope moves; and mechanical refrigerators are commonly used. Electrical

signals can be modulated due to microphonics.

• Optics/ground pickup: We have mentioned that it is important to shield the

radiometers from the 300K ground. Even if the shielding is effective at the

level of 10−5, so that the contribution from the ground is just 3 milli- K,

this ground pickup will certainly vary with time (as the ground temperature

varies) and, more importantly, as the telescope moves since the side-lobes

will be illuminating different patches of the ground.

• Thermal regulation: Since amplifier gains vary with temperature, it is im-

portant that they be kept at constant temperature.

• Electrical Grounding: Significant attention needs to be paid to grounding

issues: one needs very secure connections and one needs to guard against the

inevitable level shifts when, for example, heaters controlling the amplifier

temperatures, which draw significant currents, are cycled.

3.8 Dicke Switching

We will go into this very clever technique in some detail as it is probably the most

important of all those used in cmb experiments.

We want to consider the effect of a gain drift, ∆G in determining the temper-

ature at one spot on the sky, T1. The power detected, W, will be given by:

W = k(T1 + Tsys)G∆ν. (30)

Now the change in power, ∆W , when the gain drifts is give by:

W + ∆W = k(T1 + Tsys)(G + ∆G) (31)

which then gives the power change due to a gain drift of:

∆W∆G = ∆G∆νk(T1 + Tsys) (32)

Now let’s compare this with the power change due to an increment ∆T in the

signal:

W + ∆W = k(T1 + ∆T + Tsys)G∆ν (33)

so that the change in power due to a signal increment becomes:

∆W∆T = G∆νk∆T. (34)
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Equating these two power changes, we find:

∆T

Tsys

=
∆G

G
, (35)

i.e. a temperature sensitivity that is proportional to the (fractional) gain drift.

Now let’s consider a differencing experiment, where one measures power at

two spots:

W1 = k(T1 + Tsys)G∆ν. (36)

and

W2 = k(T2 + Tsys)G∆ν. (37)

The difference in power levels is then:

W ≡ W1 −W2 = k(T1 − T2)G∆ν (38)

The change in (the difference in) power due to a gain drift is:

W + ∆W∆G = k(T1 − T2)(G + ∆G)∆ν (39)

while that from a signal change is:

W + ∆W∆T = k(T1 − T2 + ∆T )G∆ν. (40)

Then the sensitivity to a change in temperature becomes:

∆T

Tsys

=
T1 − T2

Tsys

∆G

G
. (41)

Now, the temperature sensitivity is proportional to the temperature difference

between the two spots. A gain change can modulate this difference but, unlike in

the previous non-differencing case, it cannot fake a temperature difference. This

is the key benefit of Dicke switching.

One can see the effects of such switching in the following figures. Figure 21

shows just 8 seconds of data (from CAPMAP) for two channels, one switched and

the other not. The samples are recorded every 0.01s; one can see that the switched

channel looks much more “white” with an rms on the order expected: 1mK
√

sec

while the other displayed channel shows drifts even over this very short period of

order 0.5 K. In this case the drifts are a combination from both the atmosphere

and the amplifiers.
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Figure 21: Eight Seconds of CAPMAP Data. The signal is sampled at 100

Hz. The upper plot is an “unswitched” channel in which non-random behavior is

evident; the lower plot, which is much more Gaussian, is effectively a “switched”

output (the switching will be explained in lecture 3).

Figure 22 shows the power spectrum of two similar channels but this time on

time scales from 100 seconds to a day. The unswitched channel shows a rising

noise spectrum as the frequency decreases, a “1/f” spectrum typical of gain, and

in this case, atmospheric drifting, and that for a switched channel which even

on scales up to a day is consistent with being purely white. (Historically“Dicke

Switching” meant suitably rapidly switching one’s beam between two sources or

“loads.” Another form of ”Dicke Switching” is to look at the same point on the

sky and electronically rapidly modulate the signal and look for the residual that

remains after demodulation. The example shown in figure 22 is a combination of

both types of switching.)

3.9 “Dicke Switching” in Particle Physics

Similar techniques have been used in particle physics. At SLAC, the experiment8

measuring parity violation frequently (and randomly) switches electron helicities.

At Fermilab, the KTeV experiment had two kaon beams side by side and its

most important physics came from ratios of rates from the two beams, which also

were switched periodically. And historically, the Fermi-Marshall experiment that
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Figure 22: Noise Power spectra from PIQUE, the predecessor to

CAPMAP. The upper (black) curve is for an “unswitched” output while the

lower (green) curve is for the “switched” output. The effects of amplifier (and

atmospheric) drifts on scales from a few minutes to a day are shown: the noise on

the “switched” output is white while that on the “unswitched” one has a dominant

1/f behavior. Figure from the Ph.D. Thesis of M. Hedman.
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measured neutron-electron scattering for the first time, used a very similar idea to

Dicke’s. It is doubtful that Dicke and Fermi communicated about this: the idea

has been “discovered” independently by different scientists.

3.10 The experimental sensitivity to the power spectrum

Equation 13 gave the error in a measurement of Cl from “cosmic variance”, i.e.

at a given l there are only (2l + 1) “modes” with which to sample and determine

the variance.

That expression is valid in the regime where one is measuring the entire sky

and where the instrument noise is negligible. It also neglected the effect of fi-

nite angular resolution. In this section we will get a feel for how these effects

compromise the sensitivity to power spectra.

3.10.1 Detector Noise

When detector noise is included, the expression for the error on a given Cl becomes:

∆Cl

Cl

=

√
2

2l + 1

(
1 +

4πw−1

Cl

)
(42)

where w−1 is the total experimental “weight”; it is the grand error one would

obtain were all the experimental sensitivity concentrated in one measurement.

For example, a radiometer with the bench-mark sensitivity of 1mk
√

sec operating

for 106 sec would have w−1 = (1µK)2.

For the WMAP results (see figure 6), w−1 = 0.041µK2. This “noise” term

does not dominate the cosmic variance term until l ≥ 600.

3.10.2 Observing over a finite patch of sky

It is often advantageous to concentrate one’s observing into a finite patch of sky.

Here one gives up on the smallest multi-poles but does better for higher multipoles.

The expression for the error on a given Cl becomes:

∆Cl

Cl

=

√
2

2l + 1

 1√
fsky

+
4πw−1

Cl

√
fsky

 (43)

where fsky is the fraction of the sky under observation.

The smaller the region scanned, the detector noise term decreases while the

cosmic variance term increases: the effective number of modes is compromised.
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3.10.3 Finite Beam Resolution

Finally we consider the effect of finite beam resolution. Typically the Gaussian

approximation is used, at least in the design phase of an experiment. If the

telescope beam has resolution σb, then the expression for the error on a given Cl

becomes:
∆Cl

Cl

=

√
2

2l + 1

 1√
fsky

+
4πw−1

Cl

√
fskye

l2σ2
b

 (44)

It is clear that finite beam resolution degrades the sensitivity progressively worse

at the higher l values. Figure 23 shows a convolution of a power spectrum with

the beam shape for various angular resolutions. The WMAP beam of about 0.2

degrees limits sensitivity beyond l of about 600 while smaller beams are needed

to go much higher.

Figure 23: A Power Spectrum Convoluted with a Finite Beam. The

upper curve is the actual power spectrum while the lower ones show the multi-

pole distribution of the recovered power as it is affected by the finite beam size.

The second (blue) curve shows the effects of the CAPMAP beam of 0.05 degrees

while the 4th (magenta) shows that for WMAP with a beam of 0.24 degrees.

3.11 Choosing an Observing Stragtegy

Part of the art cmb science is choosing an observing strategy. Given an l-range

on which one wants to concentrate, and a detector sensitivity, one can choose the
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size of the sky patch, using equation 44, for optimum sensitivity. The next issue

is how one best covers the patch.

In spite of any internal instrumental switching that takes place, there are still

“offsets” that have to be dealt with. Another way to say this is that it is next

to impossible to measure the sky temperature at a point sufficiently accurately

to probe the fundamental anisotropies. The FIRAS instrument measured the

blackbody temperature to of order 10−3K, a fantastic measurement but nowhere

near accurately enough to see even the largest of the anisotropies which are at the

100µK level.

That is why one must measure differences in temperature between different

points on the sky. It is important that radiometers revisit the same points on the

sky frequently and with different time scales; in this way (hopefully) slow drifts in

response can be tracked and removed, with some usually small loss in sensitivity.

Figure 24 shows the CAPMAP observing strategy. A small patch of sky cen-

tered on the North Celestial Pole is observed. A beam of about 0.06 degrees is

swept across the patch at a frequency of about once per 8 seconds, data being

recorded at 100 Hz. Thus many swings past the same pixels are made, this while

the sky is slowly rotating under the beam. In this way one can cover the entire

patch in 12 hours and when this is done for a few months, many consistency checks

can be made to assure that one can co-add all the data to give the final sensitivity.

3.12 Data Processing

Here we give the key steps in the processing of the data. Again we’ll use CAPMAP

as an example but all of steps are generic.

• Calibrate the Radiometers: this means turning measured voltages into de-

grees K, using primarily various known sources observed throughout the sea-

son.

• Data Cleaning: inevitably there will be bad data in the sample, coming

either from bad weather, occlusions of the beam from, for example, birds or

airplanes, or detector malfunctions. As in HEP experiments, it is helpful if

the selection of good data periods can be done “blind”, i.e. by looking at

channels not directly used for the result or looking at the numerous monitors

of, for example, component temperatures or currents.
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NCP

2º

Figure 24: How CAPMAP Scans the Sky. The region covered is roughly

1 degree radius around the North Celestial Pole. One beam is shown in red; it

scans back and forth across the diameter of the region, completing a cycle every 8

seconds, this while the sky rotates underneath the scan. (The radiometers measure

the power difference in the two electric field directions shown by the green lines.)

Figure courtesy of Peter Hamlington.

• Offset removal: in almost all CMB experiments, it is necessary to remove the

mean signal seen for each scan. In the CAPMAP case, this means the mean

of the 20 pixels across the NCP every 8 seconds. This does not result in too

great a loss in sensitivity- one is removing just one degree of freedom out of

20. But there is also a residual slope across the scans, one that arises because

the beam side-lobes hit the ground and that contribution makes a small but

changing slope across the scan, hence the loss of another degree of freedom.

Finally, over the whole season, there are residual offsets that survive both of

these “subtractions”. One must strive to make sure these are as low and as

stable as possible. The analysis is done so that the results are independent

of any such constant shape, resulting is a reduction of only 3% in sensitivity.
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This residual offset needs to be “constant” only on the time scale of a day

and one has to study the data to be sure this is indeed true.

• Bin in Sky Coordinates and Make a Map: one then pixelizes the sky- in the

case of CAPMAP we have 20 pixels across the NCP and 72 around (corre-

sponding to 20 minutes of observations each day). Then all the measurements

at each pixel are co-added to make one grand map. Also for each pixel, we

need to determine the error; this is taken from the scatter of the measure-

ments on roughly 1 minute time scales. Since the ultimate error results from

combining measurements taken over months, care must be taken to ensure

that the data properly “integrates down.”

• Run likelihood for Power in l-bands. The easiest way to think about fitting

for the “fluctuation power” is the following: suppose you have a variable that

is fluctuating with an unknown signal rms σS that you want to determine.

Suppose further that the measurements also have a noise rms σN . With N

samples of this variable, what is the best measure of σS?

We can write the probability (likelihood) for σS given the N data measure-

ments Qi as follows:

L(σS) =
N∏

i=1

1√
σ2

S + σ2
Ni

e
−

Q2
i

2(σ2
S

+σ2
Ni

)
(45)

In this simple example, all the measurements are independent. In practice,

the measurements at the different pixels are coupled, i.e. the covariance

matrix is non-diagonal and this has to be taken into account.

The more general expression, where C is the covariance matrix (with a di-

mensionality of N×N) becomes:

L(α) = [detC]−
1
2 exp

[
−1

2
~xTC−1~x

]
(46)

where ~x is the data vector, and α is a set of theory parameters for which one

is fitting.

Here the covariance matrix, C=S+N, is the sum of that from theory, S(α)

and N, the experimental noise matrix. Often the latter can be taken as

diagonal but the former encodes the expected pixel-pixel correlations, given

by a theory power-spectrum.
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• Perform “null” tests on the data. Finally it is important to perform various

tests on the data to be sure that any signal is robust. For example, there

should be no signal in a data set where the first half of the data is subtracted

from the second. On shorter time-scales, it is useful to form difference data

sets where one can similarly test for systematics. For example, no signal

should be seen when the telescope is moving to the right when compared

(subtracted) from when it is moving to the left. And data taken during day-

light hours, when subtracted from that taken at night, should again similarly

give a null result.

We now leave our study of experimental issues to discuss the most important

questions for the next decade.

4 Lecture 3

In this final lecture, we consider the efforts for the coming decade. We will discuss

the generation of gravity waves during the inflationary era and show how sensi-

tive CMB experiments need to be to detect these waves. The polarization of the

CMB must be detected and we describe how polarization is generated and the

techniques for its detection. For these studies we will see that it will be impor-

tant to understand the Gravitational Lensing of the CMB. After describing some

detectors of the future, we close with some final remarks.

4.1 Primordial Gravity Waves

As was emphasized in the lecture of Michael Turner, tensor perturbations to the

space-time metric would be generated during inflation, at least during slow-roll

inflation. The mechanism is the same as that which produces density or scalar

modes.

Just like the density perturbations, inflation cannot predict the level of the

tensor modes. The parameter r = T/S is the Tensor to Scalar ratio; it depends

upon the energy scale of inflation V :

V 0.25 = 0.003Mplr
0.25 (47)

A value of r = 0.001 corresponds to Einflation = 6.4× 1015GeV.
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We show that the polarization of the cosmic microwave background can be used to detect gravity waves
from inflation if the energy scale of inflation is above 2 3 1015 GeV. These gravity waves generate
polarization patterns with a curl, whereas (to first order in perturbation theory) density perturbations do
not. The limiting “noise” arises from the second-order generation of curl from density perturbations,
or rather residuals from its subtraction. We calculate optimal sky coverage and detectability limits as a
function of detector sensitivity and observing time.
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Few ideas have had greater impact in cosmology than
that of inflation [1–3]. The simplest models of infla-
tion make four predictions, three of which provide very
good descriptions of data: the mean curvature of space
is vanishingly close to zero, the power spectrum of ini-
tial density perturbations is nearly scale invariant, and the
perturbations follow a Gaussian distribution. As the data
have improved substantially (e.g., [4–6]) they have agreed
well with inflation, whereas all competing models for ex-
plaining the large-scale structure in the Universe have been
ruled out (e.g., [7–9]).

We must note though that these three predictions are all
fairly generic [10]. Further, although existing models for
the formation of structure have been ruled out, there is no
proof of inflation’s unique ability to lead to our Universe.
Indeed, alternatives are being invented [11].

The fourth (and yet untested) prediction may therefore
play a crucial role in distinguishing inflation from other
possible early Universe scenarios. Inflation inevitably
leads to a nearly scale-invariant spectrum of gravitational
waves, which are tensor perturbations to the spatial
metric. Detection of these gravity waves might allow
discrimination between competing scenarios (e.g., [11])
and different inflationary models (e.g., [12]).

The amplitude of the power spectrum of tensor pertur-
bations to the metric is directly proportional to the energy
scale of inflation. One can use a determination of the ten-
sor contribution to cosmic microwave background (CMB)
temperature anisotropy, here parametrized by the quadru-
ple variance, to determine this energy scale [13]:

V
1�4
� �mPl � 1.15�Q2

T �1�4 � 3.0 3 1023r1�4, (1)

where r � �Q2
T ���Q2

S�, S stands for scalar (density) pertur-
bation, and �Q2

S� � 4.6 3 10211 from observations [14].
Currently the energy scale of inflation remains uncertain
by at least 12 orders of magnitude. Its determination could
be crucial to understanding how inflation arises in a fun-
damental theory of physics.

In Fig. 1 we show the angular power spectrum of CMB
temperature perturbations contributed by scalar perturba-
tions and by tensor perturbations with r � 1023. By de-
termining the total CMB temperature power spectrum we

can determine or limit the energy scale of inflation, based
on the presence or absence of extra power at low l. The
scalar temperature perturbations inevitably limit our abil-
ity to detect the tensor temperature perturbations to those
cases with r . rlim � 0.13 [15,16].

In [17,18] it was pointed out that tensor perturbations
result in CMB polarization patterns with a curl, whereas
scalar perturbations do not. By analogy with electromag-
netism, these modes are called “B modes,” and the curl-
free modes are called “E modes.” This was an exciting

FIG. 1 (color online). Angular power spectra. The solid lines
are for temperature anisotropies due to scalar perturbations, CS

Tl

and tensor perturbations CT
Tl with r � 1023. The dashed lines

are for the E modes from scalar perturbations CS
El and the B

modes from tensor perturbations CT
Bl . The dotted lines are for

the lensing-induced scalar B modes CS
Bl before (above) and after

(below) the cleaning that can be done by a perfect experiment.
The feature at � , 10 is due to reionization which we assume
occurs at zri � 7.

011303-1 0031-9007�02�89(1)�011303(4)$20.00 © 2002 The American Physical Society 011303-1
Figure 25: Expected Power Spectra.9

The parameter r can be limited by studying ∆T but because of the shape

of the temperature anisotropy from tensor modes, only a very weak (but still

interesting) limit is possible: Einflation ≤ 2 × 1016GeV. More promising is the

polarization field. Figure 25 shows the expected power spectra. CS
T l is the familiar

temperature anisotropy from scalar modes; CT
T l is that from the tensor modes: it

is easy to see that a small amount of tensor modes cannot be distinguished from

the scalar modes. CS
El and CT

Bl are polarization spectra from scalar and tensor

modes respectively. The latter holds the promise for a direct look at inflation.
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4.2 Sensitivity

From the expected power spectrum in figure 25, we see that to detect the gravity

waves, we need to concentrate on the range 50 ≤ l ≤ 120. The upper range is,

as we have seen, the horizon scale at de-coupling; the finer-scale modes are red-

shifted away. The reason is simple (although, like most “simple” things, it took

the author some time to understand): gravity waves cause a shear but not an

over-density so the perturbations do not grow with time. The signal is, however,

some 7 orders of magnitude smaller than that from the density fluctuations.

Let’s calculate the sensitivity needed to make a 3− σ detection of this signal,

with r = 0.001. We use equation 42 (which assumes an all-sky map) for the

error on Cl given the experimental weight. From the figure we see that the peak

of the power spectrum (at l ≈ 90) is about 2 × 10−17. Since what is plotted is

l(l + 1)/2π)ClT
2
cmb, we have that at the peak Cl = 0.12(nK)2. We can assume a

∆l = 70: we are sampling the power in 70 separate and uncorrelated multipoles.

Then the expression for CN that would yield a 3− σ detection becomes†:√
1

90× 70

[
1 +

CN

0.12

]
=

1

3
(48)

so that CN = 3(nK)2. Since the WMAP sensitivity for its first year is of order

21, 000(nK)2, we see that the equivalent sensitivity of about 7000 “WMAP’s”

would be required for this measurement!

How much better could we do if we optimize the sky patch? For the calcu-

lation we just did, the error from detector noise is about 25 times greater than

from cosmic variance. For the minimum error, it is easy to show that the two

terms should contribute equally; hence, by reducing the coverage until the sample

variance increases to the (decreasing) value of the detector noise (see equation

44), we will have an optimized experiment.

In this optimized case it is easy to show that for a 3− σ detection of a feature

centered at multi-pole l0, having a width ∆l = l0, we should have:

f opt
sky =

(
6

l0

)2

, and (49)

w−1
opt =

l0
6

√
Cl

24π
(50)

†We are here assuming that the beam size is small enough to not compromise the sensitivity in
this l-range.
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where Cl is the power spectrum evaluated at l0. For the case under consideration,

we find f opt
sky = 4.4 × 10−3 and w−1

opt = 2 × 10−9K. This corresponds to about 400

WMAPs, or a “savings” of a factor of about 15 over the all-sky approach.

In general, the “savings” from reducing sky coverage to the optimum value

turns out to be a factor of l0
6
, in running time or number of detectors.

We have been talking about the requirements for the detection of polarization

but we have not yet mentioned how the polarization is generated. Hence the next

section.

4.3 How Polarization Gets Generated

If there is a quadrupole anisotropy in the temperature field around a scattering

center, even if the incident radiation is unpolarized, the scattered radiation will

be as shown in figure 26: a linear polarization is generated. The quadrupole is

scattered during decoupling as was shown is figure 8. Since the polarization arises

from scattering but said scattering will dilute the quadupole, the polarization

anisotropy is much weaker than that in the temperature field. The polarization

also peaks at higher l−values: it is a small scale effect, the only scale that can

support the quadrupole.

Two example polarization fields are depicted schematically in figure 27. The

length of the lines is the strength of the polarization while their direction indicates

how the electric field tends to line up. This (tensor) field can be decomposed into

two components, in analogy with electrodynamics: “E” modes (with no handed-

ness, shown on the left) and “B” modes (with a handedness, shown on the right).

E-modes arise from the density perturbations that we have been treating while

the B-modes come from the tensor distortions to the space-time metric induced

by gravity waves (which do have a handedness).

The signature of inflation that we have been discussing could be detected if

the B-modes can be effectively isolated, this in the presence of a larger E-mode

field. It appears that this decomposition can be made at least at the level of a

few percent and possibly smaller, depending upon the level of sensitivity and the

geometry of the region observed.
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Figure 26: Generation of Polarization. Unpolarized but anisotropic radiation inci-

dent on a scattering center produces polarized radiation. Intensity is represented

here by line thickness; the quadrupole pattern produces a linear polarization in

the ẑ direction. Figure from W. Hu.

4.4 The Measurement of Polarization

This section discusses one technique for the detection of polarization, the one used

by the CAPMAP experiment. The idea is shown schematically in figure 28. The

“brute-force” method would be the following: align a polarizing filter in the a

direction and measure, after amplification the power. Do the same thing in the b

direction where b is orthogonal to a. Then the difference is a measure of (one of

the Stokes parameters of) the polarization.

The reason this is “brute-force” is because the result is dependent, among

other things, on the stability of the amplifiers: any gain shift between the two

measurements will generate a polarization where there is none to begin with.

Many of the early polarization limits were obtained using just this technique.

CAPMAP and other experiments use what is called a “correlation polarime-

ter”, which is in essence a sophisticated means of Dicke-switching. The radiation
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Figure 27: Polarization Patterns. “E” is shown on the left; “B” on the right.

The pattern shown here (from W. Hu) is actually from a simulation of the lensing

(described later in this lecture) of the CMB by the large-scale structure in the

universe.

incident upon the horn passes through an “ortho mode transducer” (OMT) which

magically sends polarization in the x−direction out one arm and that in the y−
direction out the other. (See Figure 13.) These are separately amplified and then

multiplied (in CAPMAP this is done at the IF stage). The result is:

GxExGyEy ∝ GxGy(Eb − Ea)(Eb + Ea) = GxGy(E
2
b − E2

a). (51)

This is precisely what we were trying to measure with the “brute-force” experiment

but this time we see that the result is proportional not to the difference but to the

product of the amplifier gains. This product multiplies the small power difference

on the sky so that if the gains drift, they no longer generate a fake signal.

4.5 Polarization Experiments

There are a large number of polarization experiments ongoing or in the planning

stages. The current status is shown in figure 29, which shows the results from

the DASI interferometric experiment together with those projected from capmap.

Figure 7 showed the correlation between T and E as reported by WMAP. (WMAP

has sensitivity to the EE power spectrum as well.)
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Figure 28: The “Brute Force” and Systematically Freer Approach to

Measuring Polarization.
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Figure 29: DASI Results and CAPMAP Projections on the Polarization

Power Spectrum. The solid line is close to the expected spectrum.

These experiments, and all others that have reported significant limits, use

coherent detectors. Many experiments plan on using the inherently more sensitive

bolometric detectors. These are very stable and have been used successfully for

T-anisotropy experiments such as Boomerang and Maxipol. These are incoherent

so in essence they use what we have called the “brute-force” technique although

very clever means have been devised to both make them polarization sensitive and

able to modulate the polarization sufficiently rapidly.

Figure 30 shows for many of the experiments the frequency coverage, the size

of the beam, the site, and the technique used. It is good for determining the best

techniques that these experiments span so many parameters differently.

4.6 Contaminants to Gravity-Wave B-Mode Polarization

As we have shown, the B-mode signal is likely to be very small so that one has

to worry about foregrounds. The galaxy may very well dominate at these signal
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Frequencies (#) Beam Site Technique
POLAR 30 (1) 7o WI Correl. Rad., axial spin
COMPASS 30 (1), 90 (1) 20', 7' WI Correl. Rad., NCP scan
PIQUE 40 (1), 90 (1) 30', 15' NJ Correl. Rad., NCP chop
CAPMAP 40 , 90 13', 6' NJ? Correl. Rad. Array
DASI 30 (13) 20', 7' S. Pole Interferometer
CBI 30 (13), 90 (13)? 3' Atacama Interferometer
VLA 8.4 6'' Socorro Interferometer
Polatron 90 (1) 2' OVRO Bolo,1/2 l plate
QUEST 150 , 225 (~30) 4', 3' Chile? Bolo Array, 1/2 l plate
POLARBEAR 150 … (3000 dt'rs) 10' S. Pole or M. Kea Bolo Array
BOOM2K 150 (4), 240 (4), 340 (4) 10' Antarctic LDB Bolo Array
MAXIPOL 150 (12), 420 (4) 10' US-Balloon Bolo Array,cold 1/2 l plate
BaR-SPOrt 32, 90 30', 12' Antarctic LDB Correl. Rad. Array
MAP 22, 30, 40(2), 60(2), 90(4) 13' L2, full-sky Correl. Rad. Array*

SPOrt 22, 32, 60, 90 7o ISS, full-sky Correl. Rad. Array
PLANCK-LFI 30(4), 44(6), 70(12),100(34) 33',23',13',

10'
L2, full-sky Correl. Rad. Array

PLANCK-HFI 100(4), 143(12), 217(12),
353(6), 545(8), 857(6)

11', 8',
6', 5',
5', 5'

Bolo Array

Figure 30: A Compilation (by Peter Timbie) of Most Current Polariza-

tion Experiments.

levels: dedicated studies are needed but it is likely that we won’t know the level

of the galactic foregrounds until sensitive experiments are underway. WMAP will

be able to help guide the way with its next release of its polarization data, but

not at the sensitivities we ultimately will need.

One of the foregrounds, the one that has been most studied, is also of cosmo-

logical significance. It is discussed in the following section.

4.6.1 Gravitational Lensing of the CMB

The CMB, on its way from the surface of last scattering, does not quite travel

unimpeded to today’s detectors. When it passes huge concentrations of matter,

it gets “lensed” by the gravitational potential. This lensing effect causes deflec-

tions of a few minutes of arc, deflections that are coherent over degree scales-

the (projected) scale of the large-scale structure in the universe. Figure 31 shows

a simulation of these effects: the lensing potential distorts both the tempera-

ture field and the E-polarization field but has its largest effect in generating a
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2

Fig. 1.— An exaggerated example of the lensing effect on a 10◦ × 10◦ field. Top: (left-to-right) unlensed temperature field, unlensed
E-polarization field, spherically symmetric deflection field d(n). Bottom: (left-to-right) lensed temperature field, lensed E-polarization field,
lensed B-polarization field. The scale for the polarization and temperature fields differ by a factor of 10.

gravitational waves.

2. LENSING

Weak lensing by the large-scale structure of the Universe
remaps the primary temperature field Θ(n̂) = ∆T (n̂)/T
and dimensionless Stokes parameters Q(n̂) and U (n̂) as
(Blanchard & Schneider 1987; Bernardeau 1997; Zaldar-
riaga & Seljak 1998)

Θ(n̂) = Θ̃(n̂ + d(n̂)) , (1)

[Q± iU ](n̂) = [Q̃± iŨ ](n̂ + d(n̂)) ,

where n̂ is the direction on the sky, tildes denote the un-
lensed field, and d(n̂) is the deflection angle. It is related
to the line of sight projection of the gravitational potential
Ψ(x, D) as d = ∇φ,

φ(n̂) = −2

∫
dD

(Ds −D)

DDs
Ψ(Dn̂, D) , (2)

where D is the comoving distance along the line of sight in
the assumed flat cosmology and Ds denotes the distance to
the last-scattering surface. In the fiducial cosmology the
rms deflection is 2.6′ but its coherence is several degrees.

We will work mainly in harmonic space and consider suf-
ficiently small sections of the sky such that spherical har-
monic moments of order (l,m) may be replaced by plane
waves of wavevector l. The all-sky generalization will be

presented in a separate work (Okamoto & Hu, in prep).
In this case, the temperature, polarization, and potential
fields may be decomposed as

Θ(n̂) =

∫
d2l

(2π)2
Θ(l)eil·n̂ , (3)

[Q± iU ](n̂) = −
∫

d2l

(2π)2
[E(l) ± iB(l)]e±2iϕleil·n̂ ,

φ(n̂) =

∫
d2L

(2π)2
φ(L)eiL·n̂ ,

where ϕl = cos−1(x̂ · l̂). Lensing changes the Fourier mo-
ments by (Hu 2000b)

δΘ(l) =

∫
d2l′

(2π)2
Θ̃(l′)W (l′,L) , (4)

δE(l) =

∫
d2l′

(2π)2

[
Ẽ(l′) cos 2ϕl′l − B̃(l′) sin 2ϕl′l

]
W (l′,L) ,

δB(l) =

∫
d2l′

(2π)2

[
B̃(l′) cos 2ϕl′l + Ẽ(l′) sin 2ϕl′l

]
W (l′,L) ,

where ϕl′l ≡ ϕl′ − ϕl, L = l + l′, and

W (l,L) = −[l · L]φ(L) . (5)

Here δΘ = Θ − Θ̃ for example. In Fig. 1, we show a
toy example of the effect of lensing on the temperature

Figure 31: Gravitational Lensing of the CMB. This graphic (taken from10)

gives insight into the lensing of the CMB. All panels are for a 100 by 100 field.

The upper-left panel shows a simulated temperature field; upper-middle the as-

sociated E-polarization field. The lower-left panel shows the lensed temperature

field; lower-middle the lensed E-polarization field; and lower-right the lensed B-

polarization field. The deflection field for this simulation, an appropriate convo-

lution of the matter distribution between the surface of last scattering and today,

is shown in the upper-right panel.

B-polarization field. This B-field can be “subtracted” to some extent (see figure

25) by cleverly using the information in very deep surveys with excellent angu-

lar resolution but this may represent an ultimate limit for the detection of the

primordial B-modes.

Figure 25 shows the power spectrum of these B-modes and the level to which

they can be “cleaned” using one technique. For these modes, because of the co-

herence of the lensing potential, there is more information than just the power

spectrum and work is ongoing to characterize the expected cross-correlation be-

tween different multi-pole bands.
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4.7 Sensitivities Needed

We can now compile the sensitivities needed to be able to detect the primordial B-

modes at various levels. We showed this calculation in section 4.2 and we extend

it here, including the lensing contaminant. We see that, to reach the lowest levels

that our theorists are challenging us to reach, we will need great advances in

overall sensitivity.

Table 3: Sensitivities to Detect Polarization Signals. N is the equivalent number

of “WMAP’s” needed for a 3 standard deviation effect, given for both the full

sky and optimized scenarios. The W values in this table are the total required

sensitivities of the detectors.

Signal W (full) N full
wmap W (opt) f opt

sky N opt
wmap

“E”, l = 1000 300nK 1.3× 10−3 .02

lensing, l = 1000 15 nK 1.3× 10−3 8

“B”, r = 10−3 500 pK 6,400 2 nK 4.4× 10−3 400

“B” , r = 10−4 170 pK 64,000 630 pK 4.4× 10−3 4000

“B”, cleaned r = 10−4 100 pK 150,000 370 pK 4.4× 10−3 9500

It is sobering to realize that to see inflation at a level even as large as 6.4×1015

GeV, corresponding to T/S=0.0001, one needs, in an optimized experiment, the

equivalent sensitivity of 10,000 WMAPs. Since WMAP is at the level of 100 times

COBE, it is likely to take some time before such a sensitivity is reached.

4.8 The Opportunity of Reionization

If the WMAP indication of the optical depth to reionization is correct, it means

there is a significant additional scattering surface for the generation of polariza-

tion. The gravity wave signature will show up at much lower l−values, corre-

sponding to the horizon scale at reionization: instead of peaking near l = 100,

the best place to see the B-modes from reionization is actually at l = 3! The only

means of detecting such a signal is from space; and even there it will be very hard.

Nevertheless, if the gravity waves are truly to be believed, it is wonderful to think

of them showing up with the right relative strengths at these very different scales.
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4.9 Future Detectors

It is generally thought that to make the greatest advance in sensitivity, large

bolometric arrays will be needed. Figure 32 shows a picture of one such detector.

The bolometer is a plastic with a gold coating coupled to a thermistor. The

time constant is of the order of milliseconds and this can influence the rates with

which one can scan. The sensitivity can be dominated by the photon noise itself;

bolometers are comparable to HEMT detectors at 100 GHz but are significantly

better at higher frequencies. They are also very stable. By using a wire grid

for the absorber, one minimizes the effects of cosmic rays; and by appropriate

metalizations, the detectors can be made polarization sensitive.
– 6 –

Electrical Leads

Thermistor Pad

Absorber

Nitride
Supports

Fig. 4.— A Polarization Sensitive Bolometer. The diameter of the grid is 2.6 mm. The Si3N4 mesh is

metallized in the vertical direction only, making the device sensitive to vertical polarization only. The hori-

zontal component of the grid is un-metallized and provides mechanical support for the device. Orthogonally

metallized devices are spaced 60µm apart at the exit aperture of a corrugated feed structure.

4. Photometers

The 2-color photometer (Figure 6) design has evolved from the 3-color photometer of B98.

The photometers operate at 245 and 345 GHz using conventional spider web bolometers. It is fed

by a back-to-back corrugated feed which was designed to be single-moded from 180 GHz to nearly

400 GHz. The photometers are made polarization sensitive by placing a polarizing grid in front of

feed horn entrance aperture.

Incoming radiation passes through the polarizing grid and into the back-to-back feed horn. It

exits the feed horn and enters the photometer body passing through a metal mesh low pass and a

Yoshinaga/Black-poly filter. Radiation below 295 GHz is transmitted by the dichroic to the 245

GHz bolometer, and the high frequency radiation is reflected to the 345 GHz bolometer.

Figure 32: A Bolometric Detector for Boomerang

Figure 33 shows how two polarization sensitive bolometers are illuminated

using the optics designed for the Planck mission.

Once one is at the sensitivity limit of the photon noise itself, the only way

to increase sensitivity is to add more detectors. Figure 34 shows a bolometric

array (for infrared radiation), the Sharc-II array. Experiments of the future are

planning focal planes consisting in a few hundred to a few thousand detectors.

From space, these detectors will likely be the technology of choice. But many

studies on the ground before the next satellite experiment will be able to advance

the field; and from the ground, bolometric detectors may not be so superior.
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Figure 33: Polarization Optics for the HFI Instrument on Planck. Or-

thogonally oriented Bolometers detect the two powers through identical optics.

Recently there has been an advance in the mass production of coherent ra-

diometer elements which are in fact full correlation receivers. The leader in

this development is JPL. The QUIET collaboration ‡ has recently formed and

is proposing to fully exploit this very attractive possibility. The QUIET group

intends to move the Crawford Hill telescope, Figure 16, to the CBI station in

the Atacama desert in Chile. Figure 35 shows how a focal plane of nearly 100

correlation polarimeters might be assembled. The collaboration would ultimately

like to field 1000 or more element arrays.

4.10 The CMB and Particle Physics

In this section I want to briefly mention three other “applications” that the CMB

has to particle physics.

The CMB is sensitive to the contribution to the matter density from neutrinos

and hence to their masses. Non-zero masses change the expansion history and

hence the time (or z) of decoupling and the subsequent formation of the large

scale structure. The relevant scale is the temperature at decoupling: Tdec ≈ 0.30

ev. Currently there is a limit from a joint analysis of the CMB and large scale

‡Berkeley, CalTech, Chicago, Columbia, Goddard, JPL, Miami, Princeton
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Figure 34: The SHARC-II Bolometer Array. This array, optimized for ra-

diation around 400µm, efficiently fills the focal plane with 384 1mm by 1mm

detectors.

structure of about 0.26 ev.

The affects of a finite mass on structure will then show up in the lensing of

the CMB. It has been claimed that it is possible to detect masses in the range of

0.03 ev, the range suggested by atmosphere neutrino results.

The CMB also has implications for SUSY particles. In particular, the very

precise value for Ωcdm from WMAP puts significantly tighter limits on the masses

of the lightest super-symmetric particle.

Finally we mention that the CMB may have sensitivity to what is called

“Trans-Planckian Physics.” Indeed, the modes we detect today started with wave-

lengths smaller than the Planck length itself! Models of such physics can be limited

by precise studies of the CMB.

4.11 Final Remarks

It should be clear that the cosmic microwave background has had a seminal impact

on our views of cosmology. There is the possibility that in the future we will be

able to see signals from the Universe when it went through its inflationary era
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Figure 35: The QUIET 91 Element Array. Shown schematically are the feed

horns spaced about 1.5 in apart.

(if indeed it had one). This depends critically on what the scale of inflation is

and whether it has anything to do with the grand unification scale. Also, is slow-

roll inflation the “true” mechanism? It seems that the search for these gravity

waves have an analogy with the search for the decay of the proton. The latter,

which arguably is even more significant science than a signature of inflation, has

no particularly natural scale. An order of magnitude improvement might cost

$500M and would be hard to justify on its own, given the uncertain payoff. That

important neutrino physics can be done with the same detector will be critical

in the initiation of such an effort. A satellite to look for the B-modes might cost

about the same; such a mission will also need its “neutrino physics”, in this case

studies of the lensing of the CMB.

Currently three NASA Inflation Probe studies are underway to map out the

issues which need addressing for such a mission. Many other ground based efforts

are in progress so the climate is as exciting as ever.

4.12 Acknowledgements

I am indebted to several sources in the preparation of these lectures.

First off, I want to mention the very best book on the subject for beginners.

It is by Bruce Partridge1 who provides an historical perspective together with a
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scholarly approach, including critical analyses of many of the early experiments

in the field. In spite of its being out of date on both measurements and theory, I

strongly recommend the book.

Several scientists were very giving of their time in the weeks before the lectures.

These include Steve Meyer, Wayne Hu, and my colleagues in CAPMAP.

Tom Crawford deserves special mention: his knowledge, experience and will-

ingness to be reading and discussing the same papers with which I was struggling

was most helpful and much appreciated.

I want to thank the organizers of this SLAC summer school for the opportunity

to try to summarize and expand my own knowledge on the subject: as they say,

you never fully understand anything (or know how little you really do understand

anything) until you try to teach it.

Finally I want to acknowledge Suzanne Staggs, Lyman Page, and Dave Wilkin-

son for welcoming me into a most stimulating environment at Princeton during

1999-2000, resulting in a career change for the author.
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