

Outline

- Physics Motivation
- E158 Beam and Beam Monitors
- LH₂Target and Spectrometer
- Detectors
- Analysis
- Preliminary Results for Run 1
- Outlook

Parity Violation in Moller Scattering

For a polarized electron beam and an unpolarized electron target,

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$
$$A_{PV} \propto (1 - 4\sin^2 \theta_W)$$
$$A_{PV}^{meas} = P_e \cdot A_{PV}$$

For E158, **E=48** GeV, Q²=0.03 GeV² At tree level, A_{PV} = -3 x 10⁻⁷

Parity Violation, Weak Mixing Angle

Electroweak Theory:

 $\begin{array}{lll} SU(2)_L \ x \ U(1), \ with \ isotriplet \ field \ A_i^{\mu} & SU(2)_L \ coupling \ constant \ is \ g \\ and \ isosinglet \ field \ B^{\mu} & U(1) \ coupling \ constant \ is \ g' \end{array}$

 A_1^{μ} , A_2^{μ} are charged fields and correspond to W⁺, W⁻ particles A_3^{μ} , B^{\mu} are neutral and can mix, giving the Z⁰ and γ particles Weak mixing angle: $g'=g \tan \theta_W$

August 7, 2003

World Electroweak Data

LEPEWWG Summary: Summer 2003

World Electroweak Data

LEPEWWG Summary: Summer 2003

$$\chi^2/dof \sim 27.3/15$$

Leptonic and hadronic Z couplings seem inconsistent

Probability ~ 3%

World Electroweak Data

Perhaps the Standard Model is breaking

 $\chi^2/dof \sim 27.3/15$

Leptonic and hadronic Z couplings seem inconsistent

Probability ~ 3%

Perhaps there are bigger effects elsewhere

Low Q² Measurements of θ_W

Purely leptonic reaction $g_{ee} \sim 1 - 4 sin^2 \theta_W$

Q²-dependence of θ_W

August 7, 2003

First Results from SLAC E-158

SLAC E-158

E158 Collaboration

•UC Berkeley •Caltech •SLAC

- •Jefferson Lab
- •Princeton
- •Saclay

•Smith College

•Syracuse

•UMass

•Virginia

ege 7 Ph.D. Students 60 physicists

Sep 97: EPAC approval
1998-99: Design and Beam Tests
2000: Funding and construction
2001: Engineering run
2002: Physics Runs 1 (Spring), 2 (Fall)
2003: Physics Run 3 (Summer)

E-158 Beam

(and comparison with 500 GeV Linear Collider Design)

Parameter	E-158	NLC-500
Charge/Train	5 x 10 ¹¹	14.4 x 10 ¹¹
Repetition Rate	120 Hz	120 Hz
Energy	45 GeV	250 GeV
e ⁻ Polarization	85%	80%
Train Length	270ns	267ns
Microbunch spacing	0.3ns	1.4ns
Beam Loading	13%	22%
Energy Spread	0.15%	0.16%

Polarized Source Laser System

Techniques for minimizing ^{beam}**A**_{LR}'s

At the start:

 \rightarrow ~1000 ppm, ~2 μ m systematics

1) Passive setup:

- Helicity bits delayed by 1 pulse and RF modulated prior to broadcast.
- Collimation of laser beam and minimization of spot size at CP, PS cells.
- Image CP, PS cells onto the cathode.
- OTS brought to atmospheric pressure to avoid stress-induced birefringence in windows.
- Select Pockels cells and carefully align to minimize systematics.
- Null A_Q with Δ_{CP} , Δ_{PS} .

 \longrightarrow \leq 100 ppm, ~0.5 μ m

2) Active suppression with feedbacks:

- IA loop & POS loop.
- Double-feedback loop.
 - → ~few ppb, nm level

3) Slow reversals:

- Flip certain classes of asymmetries while leaving everything else unchanged.
 - λ/2 plates (2)
 - energy (g-2 precession)
 - asymmetry inverter

• These can provide cancellation of systematics, but they also serve as a cross-check that systematics are well-understood. Multiple reversals are essential!

Can compare measurements of neighboring devices to determine the precision of the measurement.

End Station A

Scattering Chamber and Spectrometer Magnets

Sewer Pipe' in front of

Detector C

Scattering Chamber

12

FOR

-

Experimental Layout in ESA

Liquid Hydrogen Target

Refrigeration Capacity Max. Heat Load:

- Beam
- Heat Leaks
- Pumping

Length Radiation Lengths Volume Flow Rate

August 7, 2003

500W 200W 100W 1.5 m 0.18 47 liters 5 m/s

Wire mesh disks in target cell region to introduce turbulence at 2mm scale and a transverse velocity component. Total of 8 disks in target region.

Kinematics

Quadrupole Quadruplet

primary & scattered electrons enclosed in quadrupoles
Mollers (e-e) focused, Motts (e-p) defocused
full range of azimuth

cos0

August 7, 2003

Detectors

MOLLER, ep are copper/quartz fiber calorimeters PION is a quartz bar Cherenkov LUMI is an ion chamber with Al pre-radiator

All detectors have azymuthal segmentation, and have PMT readout to 16-bit ADC

$$\sigma^{\text{MOLLER}} \propto rac{1}{E heta^4} ~~ \sigma^{\text{MOTT}} \propto rac{1}{E^2 heta^4}$$

$$\left\langle \theta_{lab}^{LUMI} \right\rangle = 1.5 mrad$$

 $\left\langle \theta_{lab}^{MOLLER} \right\rangle = 6.0 mrad$

Moller, ep Detector

August 7, 2003

First Results from SLAC E-158

Profile Detector

4 Quartz Cherenkov detectors with PMT readout insertable pre-radiators insertable shutter in front of PMTs Radial and azymuthal scans

- > collimator alignment, spectrometer tuning
- background determination
- ➢ Q² measurement

Cerenkov

detector

Scattered Flux Profile

ep Background to Moller sample:

- 8% from elastic scattering
- 1% from inelastic scattering
- (42±11) ppb correction for Run 1; reduced for Runs 2, 3

LUMI Detector

 Null asymmetry measurement
 Diagnostic for luminosity fluctations, including target density fluctuations.

August 7, 2003

Pion Detector

August 7, 2003

First Results from SLAC E-158

Experimental Features

Beam helicity is chosen pseudo-randomly at 120 Hz

- use electo-optical Pockels cell in Polarized Light Source
- sequence of pulse quadruplets:

 $R_1R_2\overline{R_1}\overline{R_2}R_3R_4\overline{R_3}\overline{R_4}\cdots$

Physics Asymmetry Reversals:

- Insertable Halfwave Plate in Polarized Light Source
- (g-2) spin precession in A-line (45 GeV and 48 GeV data)

'Null Asymmetry' Cross-check is provided by a Luminosity Monitor

• measure very forward angle e-p (Mott) and Moller scattering

Also, False Asymmetry Reversals: (reverse false beam position and angle asymmetries; physics asymmetry unchanged) • Insertable "-I/+I" Inverter in Polarized Light Source

August 7, 2003

A_{PV} Measurement

1. Measure asymmetry for each pair of pulses, p,

$$A_{exp}^{p} = \frac{\sigma_{R} - \sigma_{L}}{\sigma_{R} + \sigma_{L}}$$

2. Correct for difference in R/L beam properties,

$$A^{p}_{raw} = A^{p}_{exp} - \sum_{i} a_{i} \Delta x_{i} - charge, position, angle, energy R-L differences$$

coefficients determined experimentally by regression or from dithering coefficients

3. Sum over all pulse pairs, $A_{raw} = \sum A_{raw}^{p}$

4. Obtain physics asymmetry: $A_{PV} = \underbrace{1}_{P_{b}} \underbrace{A_{raw}}_{f_{bkg}} \underbrace{f_{bkg}}_{bkg} \xrightarrow{backgrounds}_{bkg}$ backgrounds beam polarization August 7, 2003 First Results from SLAC E-158

Moller Detector Regression Corrections

observed left-right asymmetry distribution

In addition, independent analysis based on beam dithering

August 7, 2003

First Results from SLAC E-158

Beam Systematics

Beam Parameter	Beam Monitors	Monitor Agreement	MOLLER correction Agreement
Е	BPMs 12X, 24X	(0.09 ± 0.24) keV	(0.5 ± 1.3) ppb
X	BPMs 41X, 42X	$(0.9 \pm 0.6) \text{ nm}$	(0.8 ± 0.5) ppb
Y	BPMs 41Y, 42Y	(-1.0 ± 1.0) nm	(-0.2 ± 0.2) ppb
X'	BPMs 31X, 32X	(-2.3 ± 2.1) nm	(-2.0 ± 2.0) ppb
Y'	BPMs 31Y, 32Y	(0.9 ± 1.0) nm	(0.7 ± 0.8) ppb
Q	Toroids 2a, 3a	(-2.9 ± 5.3) ppb	(-2.9 ± 5.3) ppb

But, some detector 'monitors' show poor χ^2 and non-zero mean values.

Beam Systematics

Current systematic error: 18 ppb → Should reduce to 10 ppb or less

August 7, 2003

First Results from SLAC E-158

Transverse Asymmetry

Observe ~ 2.5 ppm up-down asymmetry w/ horizontal polarization First measurement of single-spin transverse asymmetry in e-e scattering.

Theory References:

Two-photon exchange QED effect

- 1. A. O. Barut and C. Fronsdal, (1960)
- 2. L. L. DeRaad, Jr. and Y. J. Ng (1975)
- 3. Lance Dixon and Marc Schreiber; (higher order calc.

in progress)

May also be useful for checking normalization factors (polarization, dilutions)August 7, 2003First Results from SLAC E-15833

ep Detector Data

 $A_{RAW}(48 \text{ GeV}) = -1.70 \pm 0.08 \text{ ppm} \text{ (stat. only)}$

Ratio of asymmetries:

 $A_{PV}(48 \text{ GeV}) / A_{PV}(45 \text{ GeV}) = 1.25 \pm 0.08 \text{ (stat)} \pm 0.03 \text{ (syst)}$

Consistent with expectations for inelastic ep asymmetry

August 7, 2003

First Results from SLAC E-158

A_{PV} Corrections and Backgrounds

Correction	f _{bkg}	$\delta(f_{bkg})$	A _{corr} (ppb)	δ(A _{corr}) (ppb)
Beam first order	-	_	-	18
Beam spotsize	-	-	0	5
Transverse asymmetry	-	_	0	0*
High energy photons	0.004	0.002	0	0
Synchrotron photons	0.0015	0.0015	0	5
Neutrons/	0.003	0.001	-5	3
ep elastic	0.080	0.020	-11	4
ep inelastic	0.017	0.005	-31	10
Soft photons	0.001	0.001	0	9
Pions	0.002	0.002	0	5
TOTAL	0.109	0.021	-47	24

$$\mathbf{A}_{PV} = \frac{1}{\mathbf{P}_{b}} \cdot \frac{\mathbf{A}_{raw} - \mathbf{f}_{bkg} \mathbf{A}_{bkg}}{\mathbf{f}_{norm}}, \mathbf{A}_{corr} = \mathbf{f}_{bkg} \mathbf{A}_{bkg}$$

•Run I systematic error will reduce from 24 to less than 15 ppb

August 7, 2003

First Results from SLAC E-158

Normalization Factors

Normalization	f	δ(f)
Factor		
Dilutions	0.89	0.02
Polarization*	0.85	0.05
Energy Scale	1.0	0.01
Geometry	1.0	0.01
Linearity	0.99	0.02

*Beam polarization measured using polarized foil target; same spectrometer used with dedicated movable detector

$$\boldsymbol{A}_{PV} = \frac{1}{P_{b}} \cdot \frac{\boldsymbol{A}_{raw} - \boldsymbol{f}_{bkg} \boldsymbol{A}_{bkg}}{\boldsymbol{f}_{norm}}$$

COSTIC CONNECTIONS

Comparing SLAC E-158 and CAPMAP

Beam

E-158

left- and rightlongitudinally polarized electron beams

CAPMAP

2 linear-polarized CMB photon beams

Dicke Switching every 16 milli-seconds, observe one (L,R) pair 4kHz fast switch from LO mixing; slow 8-second sweep over 20 3-minute pixels

Signal

Moller asymmetry for 2 beam polarization states; ~ 0.1 ppm CMB Temperature asymmetry for 2 beam polarization states; ~1 ppm (3 µK)

Sensitivity

25 ppm / \sqrt{time(sec)}

300 ppm / √time(sec) (1 mK / √sec)

Raw Moller Asymmetry (pull plots)

Moller Asymmetry vs Slug

August 7, 2003

First Results from SLAC E-158

Moller PV Asymmetry

Significance of parity nonconservation in Møller scattering: 3.6σ

August 7, 2003

First Results from SLAC E-158

Weak Mixing Angle

Implications

- Limit on Λ_{LL} at the level of 3-4 TeV (90% C.L.)
- Limits on extra Zs at the level of 400-500 GeV
- Limit on lepton-flavor violating coupling $\sim 0.02~G_F$

These numbers are competitive with collider limits

Conclusions

A very challenging experiment is producing physics results

- Parity is violated in Møller scattering
- Inelastic e-p asymmetry at low Q² measured; consistent with quark picture
- First measurement of e-e transverse asymmetry
- Run II data are being analyzed
- Final Run III in progress (Summer 2003)

Preliminary Run 1 results A_{PV} (Moller) = -151.9 ± 29.0 ±32.5 ppb $sin^2 \theta_W^{MS} (M_Z^2)$ = 0.2296 ± 0.0038