Recent Physics Results from CDF and D0

Evelyn J. Thomson The Ohio State University

B physics **B**_s and $\Lambda_{\rm b}$ properties •B_s mixing **Electroweak physics** W width Z FB asymmetry **Top physics** Top production Top mass QCD Inclusive jet production **Searches for new physics** Extra dimensions SUSY Leptoquarks Rare decays Evelyn J. Thomson, The Ohio State University

Evelyn J. Thomson, The Ohio State University

SLAC Summer Institute August 7 2003

CDF and D0 status: Run II > Run I!

Evelyn J. Thomson, The Ohio State University

"Physics at a hadron collider...

Process	Cross-section	Event Rate
Inelastic pp	60 mb	6 MHz
$p\overline{p}$ → $b\overline{b}$ (b p _T >6 GeV, η <1)	10 μb	1 kHz
p p →WX→ℓvX	5 nb	0.4 Hz
pp→ZX→ℓℓX	0.5 nb	0.04 Hz
pp→tt¯→WWbb¯→ℓvbb¯X	2 pb	0.0002 Hz
$p\bar{p} \rightarrow WH \rightarrow \ell v b\bar{b}$ (if M _H =120GeV)	15 fb	0.0000015 Hz

Assume L =100x10³⁰ cm⁻²s⁻¹,
$$\ell$$
=electron or muon $\eta = 0.5 \ln \left(\frac{p + p_z}{p - p_z} \right) = -\ln \tan \frac{\theta}{2}$
Evelyn J. Thomson, The Ohio State University SLAC Summer Institute August 7 2003

Three level trigger - CDF

Hardware tracking for $p_{T} \ge 1.5 \text{ GeV}$

Muon-track matching

Electron-track matching

Missing E_{T} , sum- E_{T}

Silicon tracking

Jet finding

Refined electron/photon finding

Full event reconstruction

CDF Level 1 Track Trigger

Heart of CDF Run II trigger L1 tracks $p_T > 1.5 GeV$ every 132ns Efficiency=96% $\sigma(\Phi)=5mr$ $\sigma(p_T)=(1.74 p_T)\%$

L1 electron = L1 track + EM cluster L1 muon = L1 track + muon stub

L1 high p_T lepton triggers for W/Z L1 low p_T lepton/track triggers for B

CDF Level 2 Silicon Vertex Trigger

Evelyn J. Thomson, The Ohio State University

CDF Momentum Scale Calibration

Essential for Mass differences Mass measurements

Use 500k J/ $\Psi \rightarrow \mu^+\mu^-$ Measure detector material to remove p_T dependence > Energy loss corrections Compare to PDG J/ Ψ mass > B field calibration

Using calibration from J/ Ψ , test with Low momentum (π): $K_s \rightarrow \pi^+ \pi^-$ High statistics (K, π): $D^0 \rightarrow K^+ \pi^-$ High momentum (μ): $\Upsilon \rightarrow \mu^+ \mu^-$

SLAC Summer Institute August 7 2003

D Meson Mass Difference

Test lattice QCD and Heavy Quark Expansion $m(B_s^0) - m(B_d^0) = m(D_s^+) - m(D^+)$ **Displaced two track trigger** 400 CDF Run II, 11.6 pb⁻¹ **Common final decay state** D^+ , $D_s \rightarrow \phi \pi$, $\phi \rightarrow KK$ € 350 ₩ 300 Almost identical kinematics Unbinned likelihood fit projected Many systematics cancel 250 **First Tevatron Run II publication** er ā_200 (PRD accepted June 2003) $m(D_{s}^{+}) - m(D^{+}) =$ 99.41 ± 0.38_(stat) ± 0.21_(sys) MeV/c² U 150 100 Agrees with old world average 50 $99.5 \pm 0.50 \text{ MeV/c}^2$ 1.95 1.80 1.85 2.00 1.90 2.05Recent BaBar PRD 65(2002)091104 KK π mass [GeV/c²] $98.4 \pm 0.1_{(stat)} \pm 0.3_{(svs)} \text{ MeV/c}^2$

Evelyn J. Thomson, The Ohio State University

Prompt Charm Meson Cross-section

B Physics

B_s Meson Mass and Lifetime

 $\begin{array}{l} \textbf{B}_{s} \mbox{ mass} - \mbox{PDG 5369.6} \pm 2.4 \mbox{ MeV/c}^{2} \\ \mbox{CDF 5365.5} \pm 1.3_{(stat)} \pm 0.9_{(sys)} \mbox{ MeV/c}^{2} \\ \mbox{D0 5360} \pm 5 \mbox{ MeV/c}^{2} \end{array}$

 $\begin{array}{l} \textbf{B}_{s} \text{ lifetime - PDG } 1.461 \pm 0.057 \text{ ps} \\ \textbf{CDF } 1.33 \pm 0.14_{(stat)} \pm 0.02_{(sys)} \text{ ps} \\ \textbf{D0 } 1.19 \pm _{0.16}^{0.19} \pm 0.14_{(sys)} \text{ ps} \end{array}$

ct = L

Evelyn J. Thomson, The Ohio State University

SLAC Summer Institute August 7 2003

In Future: Particle Identification!

B lifetime ratios

Why do we care about B lifetimes, especially Λ_b? Important Test of Heavy Quark Expansion

First observation!

Fully reconstructed hadronic final state

- Two track trigger essential
- Production rate understood

Golden mode for B_s mixing In progress: Flavour tagging (εD²) Exquisite ct resolution

Ratio of branching ratios cancels most systematics

Evelyn J. Thomson, The Ohio State University

SLAC Summer Institute August 7 2003

Towards B_s mixing

 B_s mixing World Average @95% C.L. Δm_s ≥ 14.4 ps⁻¹

> At least 30 times faster than B_d mixing $\Delta m_d = 0.502 \pm 0.006 \text{ ps}^{-1}$

Will need exquisite proper time resolution!

$$ct = L_{xy} \frac{m_B}{p_T^B}$$

> Minimise error on p_T with fully reconstructed decays $B_s \rightarrow D_s \pi$

Flavour tagging Need everything for εD²~10% ε = tag efficiency D = tag correct (dilution)

Yield – need ~1000 events CDF yield ~50 events in 65 pb⁻¹ Below expectations... ...but careful with your abacus! Silicon coverage much improved Trigger with majority logic Add more decay modes $B_s \rightarrow D_s \pi, D_s \pi \pi \pi$ $D_s \rightarrow \phi \pi, K^*K, \pi \pi \pi$

For 2 fb⁻¹, 5 σ sensitivity up to $x_s = 63 (S/B = 2/1)$ $x_s = \Delta m_s \tau(B_s)$ $x_s = 53 (S/B = 1/2)$

Two-Body Charmless B decays

CDF II simulation

Future: CKM angle y

Disentangling Charmless B decays

Electroweak Physics

Why should you care? Standard Candles! W/Z cross-sections Ratio -> W width W mass W charge Asymmetry Z FB Asymmetry WW, WZ, ZZ, WY, ZY

Trigger on leptonic decays

Clean low bkg event signatures W: 1 high p_T lepton + large MET Z: 2 high p_T leptons

BR~11% per mode for $W \rightarrow \ell v$ BR~3% per mode for $Z \rightarrow \ell^+\ell^-$

E_T>25GeV, MET>25 GeV CDF |η|<1.0, D0 |η|<1.1

Theory prediction 2.731 ± 0.002 nb NNLO Stirling et al., Phys Lett B531 (2002)Evelyn J. Thomson, The Ohio State UniversitySLAC Summer Institute August 7 2003p. 21

Theory prediction 0.252 ± 0.009 nb NNLO Stirling et al., Phys. Lett. B531 (2002)Evelyn J. Thomson, The Ohio State UniversitySLAC Summer Institute August 7 2003p. 22

W and Z cross-sections vs E_{CM}

Theory: R Hamberg, WL van Neerven and T Matsuura, Nucl. Phys. B359 (1991) 343 CTEQ4M PDF

Indirect Measurement of W Width

W, Z cross-sections systematics limited Most of systematics cancel in ratio R >Indirect measurement of W width

Γ(W) - PDG 2.118 ± 0.042 GeVRun II2.181 ± 0.074 GeV

	R		
CDF e	9.88 ± 0.24 ± 0.44		
CDF µ	10.69 ± 0.28 ± 0.31		
D0 e	10.34 ± 0.35 ± 0.49		
Combined	10.36 ± 0.16 ± 0.27		

TeVEWWG

Evelyn J. Thomson, The Ohio State University

SLAC Summer Institute August 7 2003

Forward-Backward Asymmetry

Evelyn J. Thomson, The Ohio State University

SLAC Summer Institute August 7 2003

Top Physics

Top discovered by CDF and D0 in 1995 Very heavy! Top mass = 174.3 ± 5.1 GeV < Only ~30 events per experiment !!!Want more top events to study properties!!! Run II σ 30% higher at √s=1.96 TeV

Similar mass to Tungsten Atomic # 74 35 times heavier than b quark

Top Quark Production & Decay

- Top quark heavy => decays very fast! $\Gamma(t \rightarrow bW) \sim 1.5 \text{ GeV}, T_{top} \sim 4x10^{-25}\text{s}$ $c.f. \Lambda_{QCD} \sim 100 \text{ MeV}, \Lambda^{-1} \sim 10^{-23}\text{s}$ Too fast for hadronisation! > No top mesons or baryons
 - Decay products know top spin

3 characteristic event signatures from WW decay

Dilepton: BR small but pure 2 high p_T leptons, high MET, ≥ 2 jets Lepton+Jets: BR larger but less pure 1 high p_T lepton, high MET, ≥ 4 jets (1 b-tag) All-hadronic: BR largest but huge QCD bkg

≥ 6 jets (2 b-tags)

Evelyn J. Thomson, The Ohio State University

Top Pair Production cross-section

Why is it interesting? >Re-discover top in Run II >Does cross-section increase? >Develop selections and background estimates for other top analyses

All measurements so far are counting experiments

$$\sigma(t\bar{t}) = \frac{N_{obs} - N_{bkg}}{A \int L \, dt}$$

Top cross-section: Dilepton

2 high p_T leptons, high MET, \geq 2 jets

CDF: 72 pb-1	ee	μμ	eµ	Total ℓ ℓ	CDF LL
Background	0.10 ± 0.06	0.09 ± 0.05	0.10 ± 0.04	0.30 ± 0.12	Very pure!
tt→ℓvℓvbb	0.47 ± 0.05	0.59 ± 0.07	1.44 ± 0.16	2.50 ± 0.30	
SM expectation	0.57 ± 0.08	0.68 ± 0.09	1.54 ± 0.17	2.80 ± 0.32	
Data	1	1	3	5	

CDF
$$\sigma(t\bar{t}) = 13.2 \pm 5.9_{(stat)} \pm 1.5_{(sys)} \pm 0.8_{(lum)} pb$$

New! Lepton + isolated track (126 pb⁻¹) $CDF \sigma(t\bar{t}) = 7.3 \pm 3.4_{(stat)} \pm 1.7_{(sys)} \rho b$

D0	ee: 107 pb ⁻¹	μμ: 90 pb ⁻¹	еµ: 97 pb ⁻¹	Total 	
Background	0.58 ± 0.51	0.70 ± 0.44	0.60 ± 0.42	1.88 ± 0.79	
tt→ℓvℓvbb	0.63 ± 0.10	0.46 ± 0.10	1.73 ± 0.26	2.81 ± 0.30	
SM expectation	1.21 ± 0.52	1.16 ± 0.45	2.33 ± 0.49	4.69 ± 0.64	
Data	2	0	3	5	

D0 66 S:B = 3:2

Top cross-section: Lepton + Jets

SLAC Summer Institute August 7 2003

D0 Run II Electron + Jets Candidate

Primary vertex $N_{track} = 17$ z = -4.6 cm Event is b-tagged by both SVX and CSIP (run 169923 event 16396718) 4 jets Electron $p_T = 27$ GeV Jet $p_T = 51$, 36, 30, 53 GeV Missing $E_T = 58$ GeV $H_T = 207$ GeV Aplanarity = 0.11

$\begin{array}{c} \hline \textbf{Data}\\ \textbf{108 pb}^{-1} \end{array} \begin{array}{c} \textbf{CDF } \sigma(t\bar{t}) = 3.9 \pm 1.3_{(stat)} \pm 0.7_{(sys)} \pm 0.2_{(lum)} \ pb \end{array} \\ \textbf{45 pb}^{-1} \end{array} \begin{array}{c} \textbf{D0 CSIP } \sigma(t\bar{t}) = 7.4 \pm \overset{4.4}{_{3.6(stat)}} \pm \overset{2.1}{_{1.8(sys)}} \pm 0.7_{(lum)} \ pb \end{array} \\ \textbf{45 pb}^{-1} \end{array} \begin{array}{c} \textbf{D0 SVX } \sigma(t\bar{t}) = 10.8 \pm \overset{4.9}{_{4.0(stat)}} \pm \overset{2.1}{_{2.0(sys)}} \pm 1.1_{(lum)} \ pb \end{array} \\ \textbf{90 pb}^{-1} \end{array} \begin{array}{c} \textbf{D0 SLT} + \textbf{KIN } \sigma(t\bar{t}) = 8.0 \pm \overset{2.4}{_{2.1(stat)}} \pm \overset{1.7}{_{1.5(sys)}} \pm 0.8_{(lum)} \ pb \end{array}$

р. 32

Top Quark Mass and the Standard Model

CDF Run II Top Mass: Lepton + Jets

1 high p_{T} lepton, high MET, \geq 3 jets, 1 b-tag 4^{th} jet E_{τ} >8 GeV (usually 15 GeV) 22 events, expect 6.5 ± 2.0 from bkg

Uses one quantity per event

- All events carry same weight
- Fit to shapes from MC

Source	Systematic (GeV/c ²)
Jets	6.2
ISR/FSR	2.6
PDF	2.0
Other MC modeling	1.0
Generators	0.6
Bkgd shape	0.5
b-tag	0.1
Total	7.1 GeV

Evelyn J. Thomson, The Ohio State University

Reconstructed event-by-event top mass

Choose combination with lowest χ^2

SLAC Summer Institute August 7 2003

Improved D0 Run I Top Mass

SLAC Summer Institute August 7 2003

Top Mass – Expected Statistical Errors

QCD - Inclusive Jet Production

Why should you care? Mother of all backgrounds! Jet cross-section – sensitive to gluon distribution in proton Better predictions of many new physics processes at high energies

CDF Run II Preliminary

Evelyn J. Thomson, The Ohio State University

QCD – Dijet cross-section

Searches for New Physics

Why? Standard Model is incomplete!

Why M_{EW} << M_{PI}? How to achieve grand unification? How to include gravity? What explains proliferation of quarks and leptons? What determines their mixings?

More general theories make predictions that can be tested at the Tevatron

© 2003 United Feature Syndicate, Inc. Evelyn J. Thomson, The Ohio State University

Searches for New Physics

Tevatron is the world's highest energy accelerator and is the most likely place to directly discover a new particle or force

Search for Extra Dimensions, Z' > Study of high E_{T} tails Search for SUSY >Jets + MET Photons + MET **Trileptons Search for Leptoquarks** ➢ First generation eejj ➤Second generation µµjj >All generations vvjj **Search for Rare Decays** $> D^0 \rightarrow \mu + \mu$ - $>B_s \rightarrow \mu + \mu -$

What is dark matter? SUSY LSP? Extra dimensions? Tevatron can put limits on models

 $\Omega_{M}h^{2} = 0.135^{+0.008}_{-0.009}$

 $\Omega_B h^2 = 0.0224 \pm 0.0009$

WMAP, astro-ph/0302207

Extra Dimensions Overview

SM particles confined to 4 dimensions Gravity propagates in extra dimensions Solves the hierarchy problem! Can explain dark matter!

ADD Model (Arkani-Hamed, Dimopoulos, Dvali) n "large" extra dimensions of size

 $R \sim \frac{1}{M_s} (M_{_{Pl}} / M_s)^{_{2/n}}$

n=1 R~10⁸ km – excluded! n=2 R~1 mm ~ tabletop realm n≥3 R≤3 nm - collider realm

Randall-Sundrum ModelOne "small" extra dimensionwarped by factor e^{-2krcπ}Spin-2 resonanceGraviton massCoupling k/M_{Pl}

Experimental signatures Virtual graviton exchange modifies fermion/boson pair production

Direct graviton emission Jets + MET SG

Photon + MET

Extra Dimensions – ADD Model

ee and $\gamma\gamma$: 2 EM objects p_T >25 GeV

Evelyn J. Thomson, The Ohio State University

Consistent with no signal D0 now has world's best limit! Probe up to 2 TeV with 2 fb⁻¹

95% C.L.	GRW	HLZ	Hewett
M _S (TeV)		n=2, 3, 7	λ=+1
D0 diEM	1.28	1.42, 1.52, 1.01	1.14
D0 µµ	0.88	1.05, 0.88, 0.70	0.79
CDF diEM	-	-	0.85

Extra Dimensions - Randall-Sundrum Model

Extra Gauge Bosons

Predicted by many models Look for resonance in dilepton mass Consistent with no signal

Dijet Resonances

Evelyn J. Thomson, The Ohio State University

SLAC Summer Institute August 7 2003

Scalar Leptoquarks

Directly couple quarks to leptons Predicted by Grand Unified Theories

First generation $LQ_1 LQ_1 \rightarrow eejj$ Cro<u>ୟ</u>s Section * BR [pb] ୦. DØ Run 2 Preliminary D0 Run2, M₁₀>231GeV D0 Run2 and D0 Run1, M Lo>253GeV D0 Run2 and D0+CDF Run1, M Lo>262GeV NLO Theory 210 220 230 240 250 260 270 280 200 Scalar Leptoguark Mass [GeV]

D0 M(LQ₁)>253 GeV @ 95% C.L. CDF M(LQ₁)>230GeV @ 95% C.L.

Second generation $LQ_2 LQ_2 \rightarrow \mu \mu j j$

All three generations LQ LQ→vvjj Jets + MET CDF M(LQ)>107 GeV @95%C.L.

Evelyn J. Thomson, The Ohio State University

SLAC Summer Institute August 7 2003

SUSY – Search for Long-lived Stop

SUSY – Sbottoms from Gluino Decays

SUSY Trileptons

Evelyn J. Thomson, The Ohio State University

SLAC Summer Institute August 7 2003

Search for Gauge Mediated SUSY

Rare Decays

Search for FCNC $B_s \rightarrow \mu^+ \mu^-$ CDF 1 candidate in B_s and B_d window BR($B_s \rightarrow \mu \mu$) < 9.5E-7 @ 90% CL < 1.2E-6 @ 95% CL BR($B_d \rightarrow \mu \mu$) < 2.5E-7 @ 90% CL < 3.1E-7 @ 95% CL

D0 3 candidates in B_s window BR($B_s \rightarrow \mu\mu$) < 1.6E-6 @ 90% CL

World's best limits for B_s May catch up to BaBar/Belle for B_d

SM BR(B_s→µ⁺µ⁻)~ 3.8x10⁻⁹

Various SUSY models predict enhancement by 10 to 1000

Recently interesting since same SUSY models predict deviations of $(g-2)_{\mu}$

Exp: PRL 89 (2002) 101804,129903 Theory: PRL 87 (2001) 251804

Rare Decays 3 entries / 0.020 GeV CDF Run II Preliminary 113 pb⁻¹ $B^0_{s(d)} \rightarrow \mu^+ \mu^-$ Ba search window Bs search window **CDF** 1 event in B_s and 2 **B**_d search window **Expected bkg** 1 0.54 ±0.20 (for B_s) 0.59 ±0.22 (for B_d) 0 4.8 5 5.2 5.4 5.6 5.8 $M_{\mu\mu}$ / GeV **D0 D0 Runll Preliminary** No. Candidates: 3 3.5 Expected bkg: 3.4 3 events in B_s 3 search window Signal Events/10 MeV 2.5 Region 2 **Expected bkg** 1.5 3.42 ±0.79 (for B_s) 1 0.5 0 L 4.5 5.5 6.5

μ⁺μ⁻ Mass [GeV]

Search for the SM Higgs Boson

Evelyn J. Thomson, The Ohio State University

LEP m_µ>114.4 GeV @95% CL

m_H (GeV)

SLAC Summer Institute August 7 2003

Conclusions

CDF and D0 are back!

First physics measurements well underway Displaced track trigger for B physics B_s meson and Λ_b baryon W and Z bosons Top quark Searches for new physics

> In next few years B_s mixing Top quark mass error < 3 GeV World's best limits for searches... ...or discovery of new physics!

Evelyn J. Thomson, The Ohio State University

SLAC Summer Institute August 7 2003

CDF Detector Upgrades

7-8 silicon layers 1.6<r<28 cm, |z|<45 cm $|\eta| \le 2.0, \cos\theta = 0.964$ σ(hit) ~ 14 μm

Some resolutions: р_т ~ (0.7 ⊕ 0.1 р_т)% J/Ψ mass ~15 MeV EM E ~ 16%/\E Had E ~ 100%/√E d₀ ~ 6+22/p_T μm Primary vtx ~10 µm Secondary vtx **r-Φ ~ 14 μm** r-z ~ 50 µm

1.4 T magnetic field 132 ns front end Lever arm 132 cm COT tracks @L1 SVX tracks @L2 30000/300/70 Hz ~no dead time **Time-of-flight** 100 ps@150cm p, K, π id 96 layer drift chamber $|\eta| \le 1.0$ **Tile/fiber endcap** 44<r<132 cm, 30k channels μ coverage to calorimeter |η|≤1.5 1.1<|ŋ|<3.5 80% in phi

Evelyn J. Thomson, The Ohio State University

dE/dx for p, K, π id

σ(hit) ~ 150 mm

SLAC Summer Institute August 7 2003

D0 Detector Upgrades

4 silicon layers+disks Suited to limited space 2.8<r<10 cm $|\eta| \le 3.0$, cos θ =0.993

Some resolutions: р_т ~ (2.0 ⊕ 0.2 р_т)% J/Ψ mass ~27 MeV EM E ~ 15%/\/E Had E ~ 80%/√E d₀ ~ 13+50/p_τ μm Primary vtx ~15 µm Secondary vtx **r-Φ ~ 40 μm** r-z ~ 80 µm

Now! Sci-Fi tracks@L1

Evelyn J. Thomson, The Ohio State University

σ(hit) ~ 100 μm