INTEGRAL

A New Gamma-Ray Astronomy Mission

On behalf of the INTEGRAL Science Working Team

Mission Description

- European Space Agency (ESA) mission
 - > Launched 17 Oct., 2002
- Mission Science
 - > Gamma-ray astronomy in 15 keV 10 MeV range
 - Supporting x-ray and optical monitoring
- Payload
 - Main Instruments
 - SPI: germanium spectrometer
 - IBIS: CdTe + Csl imager
 - Monitor Instruments
 - JEM-X: x-ray monitor
 - DMC: optical monitor

Mission Description (cont.)

 FOLLOW-ON TO COMPTON GAMMA-RAY OBSERVATORY(CGRO).

- NEW TECHNOLOGIES RESULT IN SIGNIFICANT IMPROVEMENTS IN PERFORMANCE OVER CGRO.
 - > Germanium detectors \Rightarrow ~ 50 x better energy resolution
 - > CdTe detectors \Rightarrow ~ 15 x better angular resolution
- FORMS COMPLEMENTARY SET WITH SWIFT (gammaray bursts) AND GLAST (high-energy gamma-rays).

INTEGRAL SPACECRAFT

INTEGRAL SPECTROMETER (SPI)

- Coded aperture gamma-ray telescope
 - > 3° angular resolution
 - > 16° field-of-view (fully-coded)
- Cooled germanium detector array
 - > 19 detector array
 - > Energy range: 20 8000 keV
 - > Energy resolution $E/\Delta E \sim 500$
- Active BGO shielding
 - > 550 kg of BGO scintillator
 - Key to achieving low instrument background

INTEGRAL IMAGER (IBIS)

- Coded aperture imager
 - > 12 arcmin angular resolution
 - > 9° X 9° field-of-view
- Two-layer detection plane
 - > CdTe
 - > Csl
 - ~ 4000 detector array
 - ✤ Energy range: 100-10000 keV
- Active BGO shielding

INTEGRAL FIELDS -OF-VIEW

FCFOV = fully-coded field-of-view

SLAC Summer School, 8/7/03

INTEGRAL OBSERVING PROGRAM

Note: Core Program is guaranteed time for instrument teams.

COMMISSIONING PHASE

- First 2 months of mission
- Long (~ 3 wk) observation of Cyg X-1.
 - Followed later by Crab observation
- Because of wide fields-of-view several other sources serendipitously observed.
 - > Cyg X-2
 - > Cyg X-3
 - > EXO 2030+375

INTEGRAL/IBIS IMAGE OF CYGNUS REGION

(Vilhu et al., submitted to A&A)

Cygnus X-1

Bazzano et al., submitted to A&A)

- First INTEGRAL target.
 - Long (~ 2 wk) observation
- First established binary black hole.
 - > Mass ~ 7 M_{sun}
- In orbit around B0 supergiant star
 - > Period: 5.6 days
- Complex temporal and spectral behavior.
 - Variability on scales of msec to yr.
 - 4-5 different spectral states.

Cyg X-1 Light Curve

Cygnus X-1 (Pottschmidt et al., submitted to A&A)

- Comptonization + reflection model
 - > Covering factor $\Omega < 0.3$
 - T_{plasma} ~ 80 keV
 - > $\tau_{\text{plasma}} \sim 1-1.5$

- Flux normalizations still a problem
 - > ± 20% SPI, IBIS/ISGRI
 - > JEM-X, factor of 2

Cygnus X-3 (Goldoni et al., submitted to A&A)

- Peculiar microquasar (compact binary with jet)
 - 4.8 hr modulation normally interpreted as LMXB
 - But IR observations indicate Wolf-Rayet (WR) star.

EXO 2030+375 (Kuznetsov et al., submitted to A&A)

- Be/X-ray transient (most common type of X-ray pulsar)
 - > 42 s period
- Also 42 d period
- Possible cyclotron feature at ~ 36 keV (Rieg & Coe, 1999)

INTEGRAL CORE PROGRAM

- Deep (4 Msec/yr) exposure of central radian of our galaxy.
 - > Create maps of annihilation radiation and ²⁶Al lines.
- Regular scans of visible part of galactic plane (GPS).

Selected known targets and TOO's (targets of opportunity)

GALACTIC PLANE SCANS

- Identify transient sources.
 - Potential follow-up observations (TOO's).
- Performed every 4th orbit (12 days).

Sensitivity

Instrument	∆E [keV]	5σ Sensitivity [mCrab]	Exposure [ksec]
IBIS	15 - 40	36	2.2
SPI	20 - 40	62	6.6
JEM-X	5 – 20	20	2.2

Galactic plane view with INTEGRAL (April 8-30, 2003)

		alactic Center (Apr 8-39, 2003) NTEGRAL IBIS/ISGRI 15-40 keV
19.000	GX9+9	
	GX144	
GX349+2 4U1700-377 GX340+0 AU1700-377 AU1700-377 AU1700-377 AU1700-377 AU1700-377 AU1700-377 AU1700-377 AU1700-377 AU1700-377 AU1700-377 AU1700-377 AU1720-318 AU1724-307 AU1724-30 AU1724-30 AU1724-30 AU141-	2 GX3+1 KGR17597-2201 GX9+1 293 GX12 GX12 GX13	X1812-121 GX17+2 +1
4U1702-429 Exo1722-363 GX339-4 4U1705-440 GX339-4	GCX-1 GCX-1 744-299/300 GRS1758-258	AXJ1820.5-1434 IGR18483-0311 O XTEJ1855-026 NGC6712
4U1735-444	GS1826-238	
-1890		X1918-053 •
	X1852-550 0	

A WARTER AND A CONTINUES.

NEW INTEGRAL (IGR) SOURCES

Source	Flux (mCrab) (15–40) keV	Flux (mCrab) (40–100) keV	Reference
IGR J18483–0311 IGR J17597–2201 IGR J18325–0756 IGR J18539+0727 IGR J17091–3624 IGR J17464–3213 IGR J16358–4726 IGR J19140+098 IGR J16320–4751	10 (S/N ~21) 5 (S/N ~10) 10 20 60 50 50-100 10-50	5 (S/N ~11) 10 (S/N >14) 5 20 20 60 20	2 May 2003 (ATEL 157) 30 Apr 2003 (ATEL 155) 28 Apr 2003 (ATEL #154) 21 Apr 2003 (ATEL #154) 19 Apr 2003 (ATEL #151) 19 Mar 2003 (ATEL #149) 28 Mar 2003 (ATEL #132) 19 Mar 2003 (IAUC #8097) 6 Mar 2003 (IAUC #8088) 1 Feb 2003 (IAUC #8076)
IGR J16318-4848	50-100		29 Jan 2003 (IAUC #8063)

A NEW CLASS OF X-RAY SOURCES?

(Revnivtsev, submitted to AL, Walter et al., submitted to A&A)

- Three newly discovered INTEGRAL sources with similar peculiar properties.
 - > IGRJ16318–4848,
 IGR J16320-4751,
 IGR J16358-4726
- Heavily absorbed X-ray spectra with hard tails.

 \underline{N}_{H} (cm⁻²) $\underline{\alpha}^{*}$

IGRJ16318-4848	3.1 x 10 ²⁴	1.0
IGR J16320-4751	2.1 x 10 ²³	1.2
IGRJ16358-4726	4.0 x 10 ²³	1.1

* Power-law index

IGRJ16318-4848

- Fe and Ni lines found in IGRJ16318-4848 (XMM)
 - Fe Kα (6.41 keV), Fe Kβ (7.07 keV), Ni Kα (7.46 keV)

A NEW CLASS OF X-RAY SOURCES? (cont.)

- Sources located within few degrees of each other in region of enhanced concentration of young massive stars (Norma arm).
- Probable Optical/IR counterparts found to IGRJ16318-4848.
 - Could be either low-mass red giant or super-massive giant depending on reddening.
 - Walter et al. suggest the source is binary system consisting of massive star and black hole in which dense absorbing shell is created by stellar wind.

SLAC Summer School, 8/7/03

GAMMA-RAY BURSTS WITH INTEGRAL

- <u>All</u> data from INTEGRAL recovered in real time.
 - > > 80% duty cycle.
- Prompt automatic burst detection and position determination on ground.
 - > Positions distributed to ground-based observers within sec. to min.
 - > Accuracy: few arcmin (IBIS)
- GRB detection rate: ~ 1/mo
- INTEGRAL (IBIS) ~ 3 x as sensitive as CGRO/BATSE.
 - INTEGRAL will sample a fainter more distant population of GRB's.
- Burst polarization measurements are possible.

GRB021125 (Malaguti et al., submitted to A&A)

GRB030320 (von Kienlin et al., submitted to A&A)

GRB030227

- First INTEGRAL GRB optical counterpart (Castro-Torado et al.)
 - Faint object: m_R ~ 23
- Redshift estimates
 - Z ~ 1.6 (Watson et al.)
 ~ 3-4 (Mereghetti et al.)
- Possibly "X-ray rich" GRB (Mereghetti et al.)
 - Brightest X-ray afterglow detected by XMM.
- Evidence for inverse Compton scattering.

GAMMA-RAY LINE STUDIES WITH INTEGRAL

- Prime scientific driver for INTEGRAL.
- Spectrometer designed to detect and measure lines in 20-8000 keV range.
 - Energy resolution: ~ 2 keV
- Production mechanisms
 - > Annihilation
 - Radioactivity (from nucleosynthesis)
 - Nuclear excitation (e.g. from cosmic rays)
 - Cyclotron absorption

KNOWN ASTROPHYSICAL GAMMA-RAY LINES

Line	<u>Energy (keV)</u>	<u>Mean Life (yr)</u>	<u>Source(s)</u>
e⁺ - e⁻ annihilation	511	N/A	Galactic Center/Plane 1E1740.7-2942 Nova Muscae
²⁶ AI	1809	1.03 x 10 ⁶	Galactic Plane
⁶⁰ Fe?	59, 1172, 1333	2.2 x 10 ⁶	Galactic Plane
⁴⁴ Ti	68, 78, 1156	91	Cas A, Vela region
⁵⁶ Co	847, 1238	0.30	SN1987A
⁵⁷ Co	122,137	1.07	SN1987A
² H, ¹² C, ¹⁶ O,	2120, 4438, 6129	prompt	Sun

CGRO/COMPTEL ²⁶Al Map

FIRST INTEGRAL ²⁶AI RESULTS

(Diehl et al., submitted to A&A)

- T_{exposure} = 1.6 Msec
- Flux = 3-5 x 10⁻⁴ ph cm⁻² s⁻¹ (depending on assumed model)
 - > ~ 10 σ significance
 - COMPTEL: 2.8 ± 0.15 ph cm⁻² s⁻¹
 (Oberlack et al., 1997)
 - RHESSI: 5.7 ± 0.54 ph cm⁻² s⁻¹ (Smith et al., 2003)
- Line width = < 3 keV</p>
 - RHESSI: 2.08 (+0.78/-1.21) ph cm⁻² s⁻¹ (Smith et al., 2003)
 - GRIS: 6.4 (+1.2,-1.1) ph cm⁻² s⁻¹ (Naya et al., Nature, 1996)

CGRO/OSSE 511 keV Map

(Purcell et al., ApJ, 1997)

INTEGRAL/SPI 511 keV MAP

- Richardson-Lucy deconvolution of 511 keV line data (6° × 6° boxcar smoothing kernel).
- Spherically-shaped emission ("bulge") towards Galactic Center.
 - Spatial distribution is well-fit by symmetric gaussian centered at
 - > I = 0, b = 0 with FWHM of 10° .
- No disk component or fountain detected so far.
 - More exposure needed.

INTEGRAL 511 keV SPECTROSCOPY

- Spatial model: symmetric gaussian centered at I = 0, b = 0 with FWHM = 10°
- Line parameters:
 Flux: 0.99 (+0.47/-0.21) x 10⁻³ cm⁻² s⁻¹ (consistent with previous results)
 Centroid:

511.06 (+0.17/-0.19) keV Width: 2.95 (+0.45/-0.21) keV (somewhat higher than previous values)

POSITRONIUM (Strong et al., submitted to A&A)

- e⁺ and e⁻ can annihilate through formation of positronium (e⁺ - e⁻ bound pair).
 - If spins are opposite
 --> two 511 keV photons
 - If spins are parallel
 --> 3 photon continuum,
 E_{max} = 511 keV
 positronium continuum
- Positronium fraction f_p
 - Fraction of total decays that go through positronium
 - Most prior results put f_p > 90%
 - Preliminary analysis indicates that INTEGRAL is in agreement.

POSSIBLE ORIGIN OF ANNIHILATION RADIATION

Supernovae (SN)

 Beta-decay of radioactive nuclei created in SN explosion and transported into interstellar medium (ISM) in expanding shell.

• Massive stars (e.g. Wolf-Rayet)

Positrons created by nucleosynthesis in stellar interior, convected to surface and transported into ISM by stellar wind.

Black Holes

- Pair plasmas believed to exist in BH jets.
- Could either be aggregate emission from many BH in Galactic Center region or from a single massive BH at Galactic Center.