### CP Violation at BaBar & Belle



### Sören Prell Iowa State

University





### 31<sup>st</sup> SLAC Summer Institute Topical Conference August 6-8, 2003



# Outline

- CP violation in the Standard Model
- The BaBar and Belle detectors
- CP violation measurements
  - $-\beta/\phi_1$ 
    - $B \rightarrow J/\psi K_s$
    - $B \rightarrow J/\psi \pi^0$ ,  $D^*D$ ,  $D^*D^*$
    - $B \rightarrow \phi K_{s'} \eta' K_s$
  - $\alpha / \phi_2$ 
    - $B \rightarrow \pi\pi$
    - $B \rightarrow \rho \pi$
  - $\ \gamma \ / \ \varphi_3$ 
    - $B \rightarrow DK$
    - $B \rightarrow D^{(*)}\pi$

### Summary and Conclusion

August 7, 2003

## Macroscopic CP Violation

N(anti-Baryon)

N(Baryon)

ATTER

 $< 10^{-4}$  - 1(

- Universe is matter dominated
   Where has the anti-matter gone?
- Generation of a net baryon number requires (Sakharov conditions):
  - 1. Baryon number violating processes (*e.g.* proton decay)
  - 2. Non-equilibrium state during the expansion
  - 3. C and CP symmetry violation (different decay rates for particles and antiparticles)
- How is CP violation described in the Standard Model and how do we measure it?





# The Weak Interactions of Quarks



# The B Unitarity Triangle

$$V^{\dagger}V = 1 \longrightarrow V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$



- angles  $\alpha,\,\beta$  and  $\gamma$  in SM related to single weak phase  $\eta$
- test SM by over-constraining the Unitarity Triangle

August 7, 2003

### Is CKM matrix the (only) source of $\mathscr{CP}$ ?

- Why should we expect other (New Physics) mechanisms for *PP*?
  - difficult for CKM CP
     violation to generate the observed matter/anti matter asymmetry in the universe
- There must be something else !



### CP Observable

- Need non-zero expectation value of a CP odd observable
  - requires two interfering amplitudes
- CP violation in B decays manifests itself in

   Different (time-integrated or time-dependent) rates of decay for B and B for specific final states
- Sometimes easy to interpret as some weak phase, sometimes interpretation hard (direct CP violation, penguin pollution, etc.)

# ∠P in Decay (direct ∠P)

• Different decay rates for  $B \rightarrow f$  and  $\overline{B} \rightarrow \overline{f}$ 

$$A_{CP} = \frac{N(B \to f) - N(\overline{B} \to \overline{f})}{N(B \to f) + N(\overline{B} \to \overline{f})}$$

 need 2 decay amplitudes with different weak phase and different strong phase:



Difficult to interpret: measure a and  $\overline{a}$  , but need  $a_1, \, a_2, \, \phi, \, \delta$ 

August 7, 2003

### CP-violating observables for B mesons



(Direct CP violation)

- Interference between 2 mixing amplitudes
- Interference between mixed and unmixed decays

### B<sup>0</sup> B<sup>0</sup> Oscillations

 $B^0$  ↔  $\overline{B}^0$  Oscillation via 2<sup>nd</sup> order weak transition • Involve  $V_{td} = |V_{td}| e^{i\beta}$ 





### B<sup>0</sup>B<sup>0</sup> Oscillation Measurements



August 7, 2003

### Interference of 2 different Paths to the same Final State induced by B Mixing

• Consider pure  $B^0$  initial state ( $\overline{B}^0$  is the same)



### *P* from Interference of Mixing and Decay

CP violation results from interference between decays with and without mixing





#### Time-dependent CP asymmetry:

$$\begin{split} A_{f_{CP}}(t) = & \frac{\Gamma(\bar{B}^0(t) \to f_{CP}) - \Gamma(B^0(t) \to f_{CP})}{\Gamma(\bar{B}^0(t) \to f_{CP}) + \Gamma(B^0(t) \to f_{CP})} \\ = & C_{f_{CP}} \cos (\Delta m_d t) + S_{f_{CP}} \sin (\Delta m_d t) \end{split}$$

$$C_{f_{CP}} = \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2}$$
$$S_{f_{CP}} = \frac{-2 \operatorname{Im} \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2}$$

$$\lambda_{f_{CP}} \neq \pm 1 \Rightarrow \operatorname{Prob}(\overline{B}^0_{phys}(t) \to f_{CP}) \neq \operatorname{Prob}(B^0_{phys}(t) \to f_{CP})$$

August 7, 2003

# **PEP-II & KEKB Asymmetric B Factories**

- Decay time determined from decay distance between B decays  $\Delta z = \Delta t$  (c  $\beta \gamma$ )
- In  $\Upsilon$ (4S) CMS daughter B's travel only  $\Delta z \sim 20 \ \mu m$
- Boost at PEP-II / KEKB decay gives much larger separation  $< |\Delta z| > ~ 250/200 \ \mu m (BaBar/Belle)$ 
  - measurable with high resolution Silicon Vertex
     Detectors (typical resolution 200 μm)
     E<sub>1</sub>= 3.5 GeV





### The BaBar & Belle Detectors

### Multi-purpose $4\pi$ detectors

- Precision vertexing with silicon strip detectors
- Tracking with central drift chamber
- PID (BaBar: DIRC, Belle: Aerogel+TOF)
- Super-conducting coil
- EM CsI calorimeter
- Muon detection with RPCs

### **Integrated Luminosity**

- BaBar 131/fb, Belle 159/fb
- ~ 80/fb analyzed per experiment
   (1/fb ~ 1.15 million BB events)





### Golden Decay Mode: $B^0 \rightarrow J/\psi K_S^0$

- Relatively 'large' branching fraction ie. O(10<sup>-4</sup>)
- Clear experimental signature
- Theoretically clean way to measure sin2β



### Measurement of sin2β





# B<sup>0</sup> Flavor Tagging

- Reconstruct one B in a decay mode accessible to B<sup>0</sup> and B
  <sup>0</sup> e.g J/ψK<sub>S</sub>
   – Need to know B flavor at production !
- determine flavor of other B (tag B) from its charged decay products
  - lepton, Kaons, soft  $\pi^+$  from  $D^{*+} \rightarrow D^0 \pi^+$ , high p tracks
  - Correlations exploited by multivariate techniques

August 7, 2003



### CP Analysis: ∆t Distributions



### Sin2β from BaBar



August 7, 2003

### Sin2 $\beta$ from Belle



August 7, 2003

### **Consistency with Indirect Measurements**



One solution for β is in good agreement with measurements of sides of Unitarity Triangle

Error on sin2 $\beta$  is dominated by statistics  $\rightarrow$  will decrease ~1/ $\sqrt{$ Luminosity for a while

### $sin 2\beta = 0.731 \pm 0.056$ (BaBar & Belle)

August 7, 2003

### **Beyond the Standard Model**

# If at least 2 amplitudes with a weak phase difference contribute $|\lambda|$ could be different from 1

(tree amplitude and leading penguin amplitude for  $B \rightarrow J/\psi K_s$  have same weak phase in SM)

$$A_{CP} = C_{f_{CP}} \cos \Delta m_d \Delta t + S_{f_{CP}} \sin \Delta m_d \Delta t$$

$$\lambda_{f_{CP}} = \frac{q}{p} \cdot \frac{\overline{A}_{f_{CP}}}{A_{f_{CP}}}$$
$$= |\lambda_{f_{CP}}| e^{-i2\varphi_{CP}}$$

$$C_{f_{CP}} = \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2}$$
$$S_{f_{CP}} = \frac{-2 Im \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2}$$

 $|\lambda| = 0.949 \pm 0.045$  (BaBar & Belle )

#### No evidence of direct CP violation due to decay amplitude interference !

### sin2 $\beta$ from B<sup>0</sup> $\rightarrow$ D<sup>\*+</sup>D<sup>\*-</sup> and B<sup>0</sup> $\rightarrow$ D<sup>\*+</sup>D<sup>-</sup>

 Tree amplitude dominant, top or up penguin diagram (internal loop) with different phases are colorsuppressed



### S and C in $B^0 \rightarrow D^* + D^-$ (BaBar)

#### 133 ± 13 signal events (81/fb)



 $B^0 \rightarrow D^{*+}D^{-}$  $S_{+} = -0.82 \pm 0.75 \pm 0.14$  $C_{+} = -0.47 \pm 0.40 \pm 0.12$ 

August 7, 2003

#### Sören Prell

More data needed, to

see penguin effect!

### sin2 $\beta$ in B<sup>0</sup> $\rightarrow$ D<sup>\*+</sup>D<sup>\*-</sup> (BaBar)

- D\*+D\*- is vector-vector final state with CP-even (S- and Dwave) and CP-odd (P-wave) contributions
- Get CP-odd fraction R  $_{\perp}$  from  $\theta_{tr}$  distribution



### sin2 $\beta$ from B<sup>0</sup> $\rightarrow$ D<sup>\*+</sup>D<sup>\*-</sup> (BaBar, 81/fb)



# $B^0 \rightarrow J/\psi \ \pi^0$

#### Tree and penguin contributions



August 7, 2003

# Sin2β with (pure) Penguins

- pure penguin decay  $B \rightarrow \phi K$ 
  - dominated by top quark in loop, up quark contribution is highly suppressed  $\overline{s}$



- SM top penguin has no weak phase and expected timedependent CP asymmetry is sin2β
- new physics may show up due to new (virtual) heavy particles replacing top quark or W in the loop August 7, 2003

# $B \rightarrow \phi K$ Results



|                    | BaBar Preliminary                                              | Belle                                                                                          | BaBar & Belle:                                                           |
|--------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| φK <sub>S</sub>    | $S = -0.18 \pm 0.51 \pm 0.06$<br>$C = -0.80 \pm 0.38 \pm 0.11$ | $S = -0.73 \pm 0.64 \pm 0.22$<br>$C = 0.56 \pm 0.41 \pm 0.16$                                  | 2 <sub>σ</sub> discrepancy<br>between S and<br>sin2β for φK <sub>c</sub> |
| K⁺K⁻K <sub>S</sub> |                                                                | $S = 0.49 \pm 0.43 \pm 0.11 ^{+0.33}_{-0.00}$<br>$C = 0.40 \pm 0.33 \pm 0.10 ^{+0.26}_{-0.00}$ | 3 <sup>rd</sup> error for K+K-K <sub>S</sub>                             |
| φK+                | $A = 0.04 \pm 0.09 \pm 0.01$                                   | $A = 0.01 \pm 0.12 \pm 0.05$                                                                   | from error in CP-<br>odd fraction                                        |

August 7, 2003

# Another penguin: $B \rightarrow \eta' K$

- Gluonic top penguin dominates
  - up penguin and tree have different weak phase ( $\gamma$ ), but are suppressed by  $\lambda^2 \sim 0.04$





August 7, 2003

# $b \rightarrow s$ Penguin Averages



 $b \rightarrow s$  penguin average S = 0.19  $\pm$  0.20

~ 2.6  $\sigma$  smaller than charmonium modes

A statistical fluctuation or a hint of new physics...

## $\alpha$ from B $\rightarrow \pi^+\pi^-$



Penguin is color suppressed: amplitude ratio P / T  $\sim$  0.3

$$\begin{array}{c|c} \text{Penguin} & \lambda^3 & d\\ b & & \\ \bar{d} & & \\ \end{array} \end{array} \begin{array}{c} & u\\ \bar{d} & & \\ \end{array} \begin{array}{c} \\ u\\ d\\ \end{array} \end{array} \begin{array}{c} \\ u\\ d\\ \end{array} \end{array}$$

Tree + Penguin:  

$$\lambda_{\pi\pi} = e^{-2i\alpha} \frac{1 + |P/T| e^{i(\delta + \gamma)}}{1 + |P/T| e^{i(\delta - \gamma)}}$$

$$S_{\pi\pi} = \sqrt{1 - C_{\pi\pi}} \sin(2\alpha_{eff})$$

$$C_{\pi\pi} \propto \sin \delta$$

**Time evolution** q=+1 (B<sup>0</sup> tag), q=-1 (
$$\overline{B}^0$$
 tag)  

$$\frac{d\Gamma}{d\Delta t} \propto e^{-\frac{|\Delta t|}{\tau}} [1 + q(S_{\pi\pi} \sin \Delta m \Delta t - C_{\pi\pi} \cos \Delta m \Delta t]$$

August 7, 2003

# $B \rightarrow \pi^+\pi^- \text{Results}$





August 7, 2003



August 7, 2003

# How to get $\alpha$ from B $\rightarrow \pi^+\pi^-$ ?

•  $\alpha$  can be determined with isospin analysis - Need Br(B<sup>+</sup> $\rightarrow \pi^{+}\pi^{0}$ ), Br(B<sup>0</sup> $\rightarrow \pi^{0}\pi^{0}$ ), Br( $\overline{B}^{0} \rightarrow \pi^{0}\pi^{0}$ )



- Need ~ 2/ab to resolve large/small  $|\kappa_{\pi\pi}|$  solutions (at 95% CL level)

 $|\alpha_{\rm eff} - \alpha| < 54^{\circ} (90\% \text{ CL})$ 

- limit on  $\alpha$  can be obtained with model input (SU(3) symmetry, QCD factorization)

August 7, 2003

# $B \rightarrow \rho^+ \pi^-$

100

/2 Me/ 08

Events / 09

20

5.24 5.25 5.26 5.27

m<sub>ES</sub>

 $N(\rho\pi) = 428 \pm 34$  in 81/fb

- Tree and penguin amplitudes contribute
  - Same Feynman diagrams as in  $B^0 \rightarrow \pi^+\pi^-$
- Not a CP eigenstate
  - Separate C and S for  $\rho^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\, \text{and}\,\,\rho^{\scriptscriptstyle -}\pi^{\scriptscriptstyle +}$
  - ρ<sup>+</sup>π<sup>-</sup> and ρ<sup>-</sup>π<sup>+</sup> yield
     asymmetry A

#### **Time-dependent rate**

$$f_{\rho^{\pm}\pi^{\mp}}(\Delta t) = (1 \pm \mathbf{A}) \Big[ 1 + q \left\{ \left( \mathbf{S} \pm \Delta S \right) \sin \Delta m \Delta t - \left( \mathbf{C} \pm \Delta C \right) \cos \Delta m \Delta t \right\} \Big]$$

5.28

GeV/c<sup>2</sup>

# $B \rightarrow \rho^+ \pi^-$ Results (BaBar 81/fb)

$$A_{\rho\pi} = -0.18 \pm 0.08 \pm 0.03$$

$$S_{\rho\pi} = 0.19 \pm 0.24 \pm 0.03$$

$$\Delta S_{\rho\pi} = 0.15 \pm 0.25 \pm 0.03$$

$$C_{\rho\pi} = 0.36 \pm 0.18 \pm 0.04$$

$$\Delta C_{\rho\pi} = 0.28 \pm 0.18 \pm 0.04$$
The (usual) C's are
$$C(B^{0} \rightarrow \rho^{-}\pi^{+}) = 0.11 \pm 0.17 \pm 0.04$$

~  $2\sigma$  hint of direct CP violation

The

# $\gamma \text{ from } B^+ \rightarrow D^0 K^+$

### Interference of b $\rightarrow$ c tree and b $\rightarrow$ u tree

- Single charm quark ensures absence of penguin contribution
- Common final state for  $D^0$  and  $\overline{D}^0$  e.g. CP eigenstates
  - D<sub>1</sub> (CP-even): K<sup>+</sup>K<sup>-</sup>, π <sup>+</sup>π<sup>-</sup>
  - D<sub>2</sub> (CP-odd):  $K_S\pi^0$ ,  $K_S\omega$ ,  $K_S\eta$ ,  $K_S\eta'$



 $b \rightarrow u$  transition is color-suppressed

- Expect up to ~10% CP asymmetry (depending on the relative strong phase)  $r \equiv \frac{A(B^- \to \overline{D}^0 K^-)}{A(B^- \to D^0 K^-)} = 0.1 - 0.2$ 

August 7, 2003

# Extract $\gamma$ with B+ $\rightarrow$ DK+

 Reconstruct D<sup>0</sup> in Cabibbo-favored modes and CPmodes (Cabibbo-suppressed)



- Experimental difficulties:
  - $D\pi$  final state has higher branching ratio (need good K ID)
  - All hadronic final states are common for D<sup>0</sup> and  $\overline{D}^0$  !
    - Solution: use at least 2 doubly Cabibbo-suppressed D final states instead of CP eigenstates

August 7, 2003

# $B \rightarrow D_{CP}K$

### Measure CP asymmetries and Cabibbo-suppression

$$A_{1,2} = \frac{Br(B^- \to D_{1,2}K^-) - Br(B^+ \to D_{1,2}K^-)}{Br(B^- \to D_{1,2}K^-) + Br(B^+ \to D_{1,2}K^-)} = \frac{\pm 2r\sin\delta\sin\gamma}{1 + r^2 \pm 2r\cos\delta\cos\gamma}$$

$$R_{1,2} = \frac{Br(D_{1,2}K^{-})/Br(D_{1,2}\pi^{-})}{Br(D^{0}K^{-})/Br(D^{0}\pi^{-})} = 1 + r^{2} \pm 2r\cos\delta\cos\gamma$$

Error O(r<sup>2</sup>) for hadronic D decays (DCSD).

r can't be determined cleanly from  $A_{1,2}$  and  $R_{1,2}$ , but

$$\frac{A_1 - R_2}{2} = 2r\cos\delta\cos\gamma \quad \frac{A_1 - A_2}{2} \sim 2r\sin\delta\sin\gamma \quad O(r^2)$$

R

# $B \rightarrow D_{CP}K$ Results

| Preliminary   | CP even                                                          | CP odd                                                            |
|---------------|------------------------------------------------------------------|-------------------------------------------------------------------|
| BaBar (DK)    | $A_1 = 0.17 \pm 0.23 \pm 0.08$<br>$R_1 = 1.06 \pm 0.26 \pm 0.17$ |                                                                   |
| Belle<br>(DK) | $A_1 = 0.06 \pm 0.19 \pm 0.04$<br>$R_1 = 1.21 \pm 0.25 \pm 0.14$ | $A_2 = -0.19 \pm 0.17 \pm 0.05$<br>$R_2 = 1.41 \pm 0.27 \pm 0.15$ |
| Belle (DK*)   | $A_1 = -0.02 \pm 0.33 \pm 0.07$                                  | $A_2 = 0.19 \pm 0.50 \pm 0.04$                                    |

#### From DK results,

$$2r\sin\delta\sin\gamma \sim \frac{A_1 - A_2}{2} = 0.15 \pm 0.12 \qquad \left[O(r^2)\right]$$

$$2r\cos\delta\cos\gamma = \frac{R_1 - R_2}{2} = -0.14 \pm 0.19$$

August 7, 2003

### $\gamma$ from B<sup>0</sup> $\rightarrow$ D<sup>(\*)0</sup>K<sup>(\*)0</sup>



- $K_S$  modes:  $D^{(*)0}K_S$ 
  - Time-dependent CP asymmetry sensitive to  $sin(2\beta+\gamma \pm \delta)$
  - Both amplitudes are about  $O(\sim\lambda^3)$
- Self-tagging modes with  $K^{*0}$  ( $\rightarrow K^+\pi^-$ )
  - Ratio r = Br(B<sup>0</sup> → D<sup>(\*)0</sup> $\overline{K}$ \*)/Br(B<sup>0</sup> → D<sup>(\*)0</sup>K\*) sensitive to relative contribution of V<sub>ub</sub> and V<sub>cb</sub> diagrams
  - Expect r  $\sim 0.2$

# $B^0 \rightarrow D^{(*)0}K^{(*)}$ Results (Belle 78/fb)



August 7, 2003

# $\gamma \text{ from } B^0 \rightarrow D^{(*)+}\pi^-$



- Large branching fractions, but b → u diagram strongly suppressed
- Expect time-dependent CP asymmetry amplitude to be small (S<sup>±</sup> = 2r sin(2β+γ± δ), |S<sup>±</sup>| ~ 0.04)
  - Cannot fit for  $|\mathbf{r}(^*)|^2 = Br(B^0 \rightarrow D^{(^*)_+}\pi^-)/Br(B^0 \rightarrow D^{(^*)_-}\pi^+)$ , use BaBar measurements of Br( $\overline{B}^0 \rightarrow D_s^{(^*)_+}\pi^-$ ) and SU(3)
    - $|\mathbf{r}| = 0.021 + 0.004 + 0.004$ ,  $|\mathbf{r}^*| = 0.017 + 0.005 + 0.007 = (\pm 30\% \text{ error from SU(3)})$
  - Tag-side b → c,u interference for non-lepton tags is same order as CP amplitude under study

# $\gamma$ from B<sup>0</sup> $\rightarrow$ D<sup>(\*)+</sup> $\pi$ <sup>-</sup> (BaBar 81/fb)



August 7, 2003

# $\gamma$ from B<sup>0</sup> $\rightarrow$ D<sup>\*+</sup> $\pi$ <sup>-</sup> (BaBar 81/fb)



**Preliminary** 

August 7, 2003

# $\gamma$ from B<sup>0</sup> $\rightarrow$ D<sup>(\*)+</sup> $\pi$ <sup>-</sup> (BaBar 81/fb)



# Summary

- CP violation in the B system is established
  - Sin2 $\beta$  is > 13  $\sigma$  away from zero
  - Most precise constraint on apex of Unitarity Triangle
- Consistency: tree vs. penguin for  $sin 2\beta$ 
  - 2.6  $\sigma$  discrepancy; more data needed
- Measurements of  $\alpha$  and  $\gamma$  have larger uncertainties (theoretical and/or experimental)
  - $-\alpha/\phi_2$ 
    - Need to control penguins in  $\pi\pi$ ,  $\rho\pi$ , etc. (need B<sup>0</sup>  $\rightarrow \pi^0\pi^0$ )
  - $-\gamma/\phi_3$ 
    - DK modes are theoretically clean, but need much more data
    - $D\pi$  becomes interesting, will be limited by (theoretical) error on  $|\lambda(*)|$
- Need better precision on  $\alpha$  and  $\gamma$  to constrain Unitarity Triangle

# Conclusions

- Standard Model CKM prediction of only one complex phase as single source of CP violation has not been disproved, yet
- Current experimental measurements of CP violation in weak interactions of quarks are unlikely to explain the CP asymmetry observed in the universe.
- New physics and its contribution to CP violation in B decays are still possible, but remain to be discovered...