

Laser Interferometer Gravitational Wave Observatory

LIGO Commissioning and Initial Science Runs: Current Status

Michael Landry

LIGO Hanford Observatory/Caltech on behalf of the LIGO Scientific Collaboration http://www.ligo.org

New Window on Universe

Einstein's Theory of Gravitation

gravitational radiation
binary inspiral
of
compact objects

- a necessary consequence of Special Relativity with its finite speed for information transfer
- gravitational waves come from the acceleration of masses and propagate away from their sources as a space-time warpage at the speed of light

"Indirect" detection of gravitational waves

Direct Detection

Gravitational Wave Astrophysical Source

Detectors in space LISA

Terrestrial detectors
LIGO,GEO,TAMA,Virgo,AIGO

An International Network of Interferometers

Simultaneously detect signal (within msec)

Detecting a passing wave

Free masses

Detecting a passing wave

Interferometer

Interferometer Concept

- Laser used to measure relative lengths of two orthogonal arms
- Arms in LIGO are 4km
- Measure difference in length to one part in 10²¹ or 10⁻¹⁸ meters

LIGO sites

LIGO (Washington)

("The evergreen state")

LIGO (Louisiana)

LIGO

Some site details

Core Optics Suspension and Control

Optics
suspended as simple pendulums

Shadow sensors & coil actuators provide damping and control forces

Mirror is balanced on 30 micron diameter wire to 1/100th degree of arc

Some Commissioning Challenges

- Understand displacement fluctuations of 4-km arms at the millifermi level (1/1000th of a proton diameter)
- Control arm lengths to 10⁻¹³ meters RMS
- Detect optical phase changes of ~ 10⁻¹⁰ radians
- Hold mirror alignments to 10⁻⁸ radians

LIGO

Commissioning History

Interferometer Length Control System

- •Multiple Input / Multiple Output
- Three tightly coupled cavities
- •Ill-conditioned (off-diagonal) plant matrix
- Highly nonlinear response over most of phase space
- •Transition to stable, linear regime takes plant through singularity
- •Employs adaptive control system that evaluates plant evolution and reconfigures feedback paths and gains during lock acquisition

Tidal Compensation Data

Controlling angular degrees of freedom

Calibration of the Detectors

- Combination of DC (calibrates voice coil actuation of suspended mirror) and Swept-Sine methods (accounts for gain vs. frequency) calibrate meters of mirror motion per count at digital suspension controllers across the frequency spectrum
- DC calibration methods
 - » fringe counting (precision to few %)
 - » fringe stepping (precision to few %)
 - » fine actuator drive, readout by dial indicator (accuracy to ~10%)
 - » comparison with predicted earth tides (sanity check to ~25%)
- AC calibration measures transfer functions of digital suspension controllers periodically under operating conditions (also inject test wave forms to test data analysis pipelines)
- CW Calibration lines injected during running to monitor optical gain changes due to drift

LIGO Sensitivity Over Time

Livingston 4km Interferometer

The S1 Run

The S1 run: In-Lock Data Summary

Red lines: integrated up time

Green bands (w/ black borders): epochs of lock

- •August 23 September 9, 2002: 408 hrs (17 days).
 - •H1 (4km): duty cycle 57.6%; Total Locked time: 235 hrs
 - •H2 (2km): duty cycle 73.1%; Total Locked time: 298 hrs
 - •L1 (4km): duty cycle 41.7%; Total Locked time: 170 hrs
- •Double coincidences:
 - •L1 && H1: duty cycle 28.4%; Total coincident time: 116 hrs
 - •L1 && H2: duty cycle 32.1%; Total coincident time: 131 hrs
 - •H1 && H2: duty cycle 46.1%; Total coincident time: 188 hrs
- •Triple Coincidence: L1, H1, and H2: duty cycle 23.4%;
 - •Total coincident time: 95.7 hrs

Sensitivity during S1

LIGO S1 Run

"First
Upper Limit
Run"

- **23** Aug-9 Sept 2002
- ■17 days
- All interferometers in power recycling configuration

GEO in S1 RUN

Ran simultaneously In power recycling Lesser sensitivity

Strain Sensitivities for the LIGO Interferometers for S1 23 August 2002 - 09 September 2002 LIGO-G020461-01-E

Potential gravity wave sources

- Bursts: supernovae, black hole mergers, unknown, {triggered burst search}
- Binary inspirals: NS-NS, {BH-BH, NS-BH, Macho}
- Stochastic background: big bang, weak incoherent source from more recent epoch
- Continuous waves: known EM pulsars, {all-sky search for unknown CW sources, LMXRB (e.g. Sco-X1)}
- Analysis emphasis:
 - » Establish methodology, no sources expected.
 - » End-to-end check and validation via software and hardware injections mimicking passage of a gravitational wave.

Search for Gravitational Wave Bursts

- Search methods (generic, no templates):
 - » Time domain algorithm identifies rapid increase in amplitude of a filtered time series (threshold on 'slope').
 - » Time-Frequency domain algorithm: identifies regions in the timefrequency plane with excess power (threshold on pixel power and cluster size).
 - •Single interferometer: noisy data epochs were excluded
 - •essential: use temporal coincidence of the 3 interferometers
 - •correlate frequency features of candidates (time-frequency domain analysis).

LIGO PRELIMINARY results of the Burst Search

- End result of analysis pipeline: number of triple coincidence events.
- Use time-shift experiments to establish number of background events.
- Use Feldman-Cousins to set 90% confidence upper limits on rate of foreground events (preliminary results):
 - » Time domain: <5.7 events/day
 - » Time frequency domain: <1.6 events/day</p>

Search for Inspirals

- Sources: orbital-decaying compact binaries: neutron star known to exist and emitting gravitational waves (Hulse&Taylor).
- Search method: system can be modeled, waveform is calculable:

» use optimal matched filtering: correlate detector's output with template waveform

Inspiral algorithm

- Use LLO 4k and LHO 4k
- Matched filter trigger:
 - » Threshold on SNR, and compute c^2
 - » Threshold on c^2 , record trigger
 - » Triggers are clustered within duration of each template
- Auxiliary data triggers
 - Vetoes eliminate noisy data
- Event Candidates
 - » Coincident in time, binary mass, and distance when H1, L1 clean
 - » Single IFO trigger when only H1 or L1 operate
- Use Monte Carlo simulations to calculate efficiency of the analysis
 - » Model of sources in the Milky Way, LMC,SMC

Results of the Inspiral Search

- Upper limit on binary neutron star coalescence rate
- Use all triggers from Hanford and Livingston: 236 hours
 - » Cannot accurately assess background (be conservative, assume zero).
 - » Monte Carlo simulation efficiency $\varepsilon = 0.53$
 - » Effective no. MWEG: $N_G = \varepsilon(L_{pop}/L_G) = 0.53x1.13 = 0.60$

$$N_{\rm G} = 0.60^{+0.12}_{-0.10}$$

- » 90% confidence limit = 2.3/ (time * N_G).
- » Express the rate as a rate per Milky Way Equivalent Galaxies (MWEG).

$$R < 2.3/ (0.5 \times 236 \text{ hr}) = 170/\text{yr}/(\text{MWEG})$$

•Compare with:

- ➤ Previous experimental results:
 - -LIGO 40m '94: 0.5/hr (25hrs, D<25kpc, Allen et al., PRD 1998)
 - -TAMA300 '99: 0.6/hr (6 hr, D<6kpc, Tagoshi et al., PRD 2001)
 - -TAMA300 DT6: 82/yr (1,038 hr, D<33 kpc, GWDAW 2002)
- > Expected Galactic rate: ~10⁻⁶ 5 x 10⁻⁴ /yr (Kalogera et al)

Search for Stochastic Radiation

• Analysis goals: constrain contribution of stochastic radiation's energy r_{GW} to the total energy required to close the universe r_{critical} :

$$\int_{0}^{\infty} (1/f) \Omega_{GW}(f) df = \frac{\mathbf{r}_{GW}}{\mathbf{r}_{critical}}$$

- Optimally filtered cross-correlation of detector pairs: L1-H1, L1-H2 and H1-H2.
- Detector separation and orientation reduces correlations at high frequencies ($\lambda_{GW} \ge 2xBaseLine$): overlap reduction function
 - » H1-H2 best suited
 - » L1-H1(H2) significant <50Hz</p>

Results of Stochastic Search

Interferometer Pair	90% CL Upper Limit	T _{obs}
LHO 4km-LLO 4km	₩ _{GW} (40Hz - 314 Hz) < 55	64.0 hrs
LHO 2km-LLO 4km	W _{GW} (40Hz - 314 Hz) < 23	51.3 hrs

- Non-negligible LHO 4km-2km (H1-H2) cross-correlation; currently being investigated.
- Previous best upper limits:
 - » Measured: Garching-Glasgow interferometers :
 - » Measured: EXPLORER-NAUTILUS (cryogenic bars): $\Omega_{\!\scriptscriptstyle GW}(f) < 3 imes 10^5$

$$\Omega_{GW}(907Hz) < 60$$

LIGO

Expectations for Continuous Waves

- Detectable amplitudes with a 1% false alarm rate and 10% false dismissal rate by the interferometers during S1 (colored curves) and at design sensitivities (black curves).
- Limits of detectability for rotating NS with equatorial ellipticity $e = dVI_{zz}$: 10^{-3} , 10^{-4} , 10^{-5} @ 8.5 kpc.
- Upper limits on <h_o> from spin-down measurements of known radio pulsars (filled circles) if observed spindown all due to GW emission.

S1: NO DETECTION EXPECTED

Algorithms for CW Search

- Central parameters in detection algorithms:
 - **»frequency modulation** of signal due to Earth's motion relative to the Solar System Barycenter, intrinsic frequency changes.
 - »amplitude modulation due to the detector's antenna pattern.
- Search for known pulsars dramatically reduces the parameter space:
 computationally feasible.
- Two search methods used:
 - »Frequency-domain based: fourier transform data, form max. likelihood ratio ("F-statistic"), frequentist approach to derive upper limit
 - »Time-domain based: time series heterodyned, noise is estimated. Bayesian approach in parameter estimation: result expressed in terms of posterior pdf for parameters of interest

LIGO

Results of Search for CW

- No evidence of continuous wave emission from PSR J1939+2134.
- Summary of preliminary 95% upper limits on h:

IFO	Frequentist FDS	Bayesian TDS
GEO	(1.9±0.1)x10 ⁻²¹	(2.2 ±0.1)x10 ⁻²¹
LLO	(2.7±0.3)x10 ⁻²²	(1.4 ±0.1)x10 ⁻²²
LHO-2K	(5.4±0.6)x10 ⁻²²	(3.3 ± 0.3) x 10^{-22}
LHO-4K	(4.0±0.5)x10 ⁻²²	(2.4 ± 0.2) x 10^{-22}

- LLO upper limit on $h_0 < 1.4x10^{-22}$ constrain **ellipticity < 2.7x10**⁻⁴ (assuming M=1.4M_{sun}, r=10km, R=3.6kpc)
- Previous results for PSR J1939+2134: $h_o < 10^{-20}$ (Glasgow, Hough et al., 1983), $h_o < 3.1(1.5)x10^{-17}$ (Caltech, Hereld, 1983).

LIGO science has started

- LIGO has started taking data, completing a first science run ("S1") last summer
- Second science run ("S2") 14 February 14 April:
 - » Sensitivity was ~10x better than S1
 - » Duration was ~ 4x longer
 - Bursts: rate limits: 4X lower rate & 10X lower strain limit
 - Inspirals: reach will exceed 1Mpc -- includes M31 (Andromeda)
 - Stochastic background: limits on $\Omega_{\rm GW}$ < 10⁻²
 - Periodic sources: limits on h_{max} ~ few x 10^{-23} (ϵ ~ few x 10^{-6} @ 3.6 kpc)
- Commissioning continues, interleaved with science runs
- Ground based interferometers are collaborating internationally:
 - » LIGO and GEO (UK/Germany) during "S1"
 - » LIGO and TAMA (Japan) during "S2"