

Stephen Kent (Fermilab)

I. Description/Status of survey Operations Data Products

II. Science projects with SDSS

Galaxy properties Large Scale Structure CMB-SDSS Correlation

Quasars

SLAC Topical Conference Cosmic Connections Aug 8, 2003

Partner Institutions

Fermi National Accelerator Laboratory Princeton University University of Chicago Institute for Advanced Study **Japanese Promotion Group US Naval Observatory University of Washington Johns Hopkins University** Max Planck Institute for Astronomy, Heidelberg Max Planck Institute, Garching **New Mexico State University** Los Alamos National Laboratory University of Pittsburgh

Funding Agencies

- Alfred P. Sloan Foundation
- Participating Institutions
- NASA
- NSF
- DOE
- Japanese Monbukagakusho
- Max Planck Society

Sloan Digital Sky Survey

Goals:

- 1. Image 1/4 of sky in 5 bands
- 2. Obtain redshifts of 1 million galaxies and quasars

Science:

Measure large scale structure of a) galaxies in 0.2% of the visible universe b) quasars in 100% of the visible universe Astrophysics/Particle Physics Connection: Large scale structure today arose in universe from processes occuring above T=10²⁷ K (E=10¹⁴ Gev).

Detectors/Equipment

2.5 m Telescope

640 Fiber Spectrograph

Mosaic Imaging Camera

"Photometric" telescope

Survey Operations

1. Image Sky

PlateID: 798, temp: 5C, haMin: 0deg, haMax: 0deg, mjd: 52242

2. Identify Galaxies, Quasars

3. Design Plugplates

4. Obtain Spectra

Sloan Digital Sky Survey Current Status (Aug. 2003)

Baseline

IMAGING

8452 sq. deg.

SPECTROSCOPY 1688 tiles

MT (calibrations) 1563 patches

Operations began: Apr 1, 2000 Operations end: Jun 30, 2005 Proposed 2 year extension **Percent Complete**

78% as of Aug 6, 2003

48% as of Aug 6, 2003

93% as of Aug 6, 2003

Imaging Sky Coverage

Strength of SDSS

Depth Accuracy Bands Area IMAGING DPOSS (plates) r = 20.5 20% J, F, N 30,000 sq deg

SDSS r = 22.5 2% u, g, r, i, z 5000 sq deg

 Spectroscopy
 Spectroscopy

 00
 400,000

 0
 ~40,000

 5
 CCD

Catalog Information

- Imaging
 - Magnitudes (5 bands) ==> 4 colors
 - Morphology (crude)
 - Size
 - Shape
 - Position
- Spectroscopy
 - Redshift => Luminosity, distance
 - Velocity Dispersion
 - Line strengths (abs., emission)

Research Results

Publications

- 277 total
- (185 in refereed journals)
- 35 additional based on SDSS data
- 40 Ph. D. Theses (most in progress)

Topics

- Hi Z Quasars
- Gravitational Lensing
- QSO & Galaxy Corr. Function
- Galaxy Clusters
- Galaxy Struct./Evol.
- Milky Way Halo
- Brown Dwarfs
- White Dwarfs
- Asteroids

Data Release 1 to public Now Available (www.sdss.org)

All data through June 30, 2001

lews and Updates

Tutorials Data Products

Data Access

Instruments

Data Flow

Algorithms Glossary Help and Feedback Search

Sky Coverage

SDSS Data Release 1 storn Digital Sky Survey

The Sloan Digital Sky Survey (see www.sdss.org for general information) will map one-quarter of the entire sky and perform a redshift survey of galaxies, quasars and stars. The DR1 is the first major data release and provides images, imaging catalogs, spectra, and redshifts for download.

This release contains the "beta" processing of the DR1 data set. About DR1 explains what we mean by "beta"

Please refer to the credits page for our sources of funding, participating institutions, how to acknowledge the use of SDSS data in your publications. Please also note how to refer to SDSS sources in your publications using the proper IAU nomenclature for SDSS sources.

Imaging

Footprint area	2099 sq. deg.	
Imaging catalog	53 million unique objects	
Data volume	images 2.338 TB catalogs 0.462 TB	
Magnitude limits (35% detection repeatability for point sources)	u g r i z 22.0 22.2 22.2 21.3 20.5	
PSF width	1.4" median in c	
Photometric calibration	r u-g g-r r-i i-z 2% 3% 2% 2% 3%	
Astrometry	< 0.1" rms absolute per coordinate	

Spectroscopy

Spectroscopic area	1360 sq. deg. (Note: we earlier erroneously reported 1556 sq. deg. as spectroscopic area.)				
Resolution	1800				
Signal-to-noise	>4 per pixel at g=20.2				
Redshift accuracy	30 km/sec rms (from repeat observations)				
Target magnitude limits for main samples	Galaxies: Petrosian r <17.77 Quasars: PSF / <19.1				
Spectroscopic catalog	186,250 objects, classified into 134,000 Galaxies 17,700 Quasars (redshift <2.3)				
Data volume	calibrated spectra ("2d")	0.014 TB			
	spectra, redshifts, line measurements ("1 d")	0.039 TB			

This is version v1_20030714_1801 .

If you are using Netscape 4.x and see oversized fonts, please look at the workaround on the Credits page.

Send your questions to sdss-helpdesk@fnal.gov

SDSS DR1 Spectral Sky Coverage (Aitoff projection of Equatorial coordinates)

60

What is Cosmology?

Good old days

 $_{-}$ H₀, q₀

Modern Times

$$- H_{0}$$

$$- \Omega_{Total} = \Omega_{\Lambda} + \Omega_{Matter} + \Omega_{v}$$

$$- \Omega_{Baryon} + \Omega_{CDM}$$

$$- \sigma_{8}, n, w, b$$

$$SDSS \text{ will measure}$$

$$SDSS \text{ will try to}$$

$$Matter + \Omega_{v}$$

Cosmology du Jour (ΛCDM)

$$\begin{array}{ll} \mathsf{H}_{_{0}} &= 72\\ \boldsymbol{\Omega}_{_{Total}} &= 1\\ \boldsymbol{\Omega}_{_{\Lambda}} &= 0.7\\ \boldsymbol{\Omega}_{_{CDM}} &= 0.25\\ \boldsymbol{\Omega}_{_{Baryon}} &= 0.05\\ \boldsymbol{\sigma}_{_{8}} &= 0.9\\ \boldsymbol{n} &= 1\\ \mathsf{W} &= -1\\ \mathsf{b} &= 1 \end{array}$$

Obligatory Pie Diagram

The clustering of galaxies that we see today arose from quantum fluctuations laid down at the end of the inflationary epoch in the early universe.

Distribution of Galaxies around Sun to z=0.15

Distribution of Quasars to z = 2

Galaxy Properties - Why SDSS?

- Want to understand biasing between galaxies (luminosity) and mass.
- Number of galaxies is a multivariate function of
 - Luminosity
 - Morphology/color
 - Environment (density)
 - Redshift

. . .

- Surface brightness
- Requires large sample of galaxies with accurate data!

Same figure but sorted by galaxy color.

Shear ($\epsilon = 1-b/a$) measures projected mass density

Shear and mass Density vs. Radius for ensemble of 31,000 foreground galaxies

TABLE 3					
Mass and M/L Fits for Different Gai	LAXY TYPES				

Galaxy Type	$\langle M(R \le 260 \text{ kpc}) \rangle ^{*}$ $10^{12} \text{ h}^{-1} M_{\odot}$	${ m \langle M/L_{u'} angle}^{ b}$ h M $_{\odot}/L_{\odot}$	$\langle { m M/L}_{g'} angle$ h M $_{\odot}/{ m L}_{\odot}$	$\langle { m M/L}_{r'} angle$ h M $_{\odot}/{ m L}_{\odot}$	$\langle { m M/L}_{i'} angle$ h M $_{\odot}/{ m L}_{\odot}$	$\langle { m M/L}_{z'} angle$ h M $_{\odot}/{ m L}_{\odot}$
All Spirals Ellipticals	$2.6 \pm 0.3 \\ 1.5 \pm 0.4 \\ 4.1 \pm 0.5$	$329 \pm 40 \\ 167 \pm 48 \\ 647 \pm 77$	$290 \pm 35 \\ 192 \pm 55 \\ 425 \pm 51$	$ \begin{array}{r} 170 \pm 21 \\ 143 \pm 41 \\ 221 \pm 26 \\ \end{array} $	$124 \pm 15 \\ 112 \pm 32 \\ 158 \pm 19$	$100 \pm 12 \\ 97 \pm 28 \\ 123 \pm 14$

^aBased on fits to singular isothermal spheres

 $^{\mathrm{b}}\mathrm{M} = \mathrm{M}(\mathrm{R} \leq 260 \mathrm{~kpc})$

McKay + Blanton ==> Ω (matter) > 0.16

- One measure of galaxy clustering
- $\epsilon(r) = \langle \Delta \rho(r') \Delta \rho(r'+r) \rangle$
- Approximation: $\varepsilon = (r/r_0)^{-\gamma}$
 - $-r_0 \approx 8$ Mpc (correlation length)
 - $-\gamma \approx 1.8$

• Power spectrum: P(k) = Fourier Transform of $\varepsilon(r)$

Galaxy-Galaxy angular 2-point correlation Function (Zehavi et al. 2003)

Departures from Power Law: Halo Occupation Distribution Model

The Cluster Finding Renaissance

SDSS Cluster Finders:

- maxBcg (Annis et al) – Search for BCG and E/SO ridge
- Hybrid Matched Filter (Kim et al) – Matched filter on luminosity function and radial profile
- Cut and Enhance (Goto et al) – Color cuts, gaussian cloud, image processing
- Voronoi Tessalation (Kim et al) - Color cuts, then tessalation
- C4 (Miller et al) – Near neighbors in color-color space
- SRC: SDSS-RASS Catalog (Annis et al) – E/S0 overdensities at RASS faint source position
- FOG: The finger of god catalog (Annis et al) - Velocity space search for fingers of gods.

Photo-z is revolutionizing cluster finding

Photometry

Photometry

Photometry

Photometry

Photometry

Xray cross ID

Spectroscopy

Galaxy Clusters

Abell 1689 Galaxy Cluster

Elliptical Galaxy Spectrum

RA=48.69957, DEC=-1.10044, MJD=52258, Plate= 412, Fiber= 7

The maxBcg Algorithm (Annis et al, 2002, Bahcall 2003)

- Animation of process for a single galaxy
- Perform step for all galaxies
- Build a 3-d map
- Locate maxima

- Strengths
 - Works to high z
 - Very good photo-z
- Weaknesses
 - Strong assumptions built in

The maxBcg Cluster Catalog

- The 200 sq-degrees currently analyzed gives a catalog of 4000 clusters
- •
- Photometric redshift for each cluster good to 0.015
- •
- Mass estimates from total galaxy light
- Plot shows all clusters from a wedge 90° wide and 3° high, out to redshifts of 0.7

SDSS maxBcg Survey

maxBcg Calibration from weak lensing (Sheldon et al. 2002)

Cluster-Cluster correlation length vs cluster richness

(Bahcall et al 2003)

Three-dimensional Power Spectrum

(Tegmark et al 2003)

Bias vs. Galaxy Luminosity

SDSS vs Rest of World

WMAP MAP of the CMB

22

What Are We Measuring?

How to find High Redshift QSOs

o 4.5 < z

z=6.28 Quasar (r', i', z')

End of the Dark Ages

Optical Depth vs. Redshift

z_{ebs}

Conclusions

- SDSS is performing successfully
- We are testing "cosmology du jour" with ever increasing precision
- 400,000 redshifts + 30 Terabytes of processed data: *Quantity has a quality all its own*
- Producing leading edge science in a wide range of disciplines