Jet Quenching at RHIC

First Results from the Spring, 2003 RHIC 200 GeV d+Au Run

Carl Gagliardi
Texas A&M University

Outline

- What have we learned in Au+Au collisions?
- What did we see in d+Au collisions?

Geometry of heavy ion collisions

Number of participants: number of incoming nucleons in the overlap region

Number of binary collisions: number of equivalent inelastic nucleonnucleon collisions

Experimental determination of centrality

p_T distribution of charged particles

Chemical equilibrium?

Thermal model: Partition fn with params T, μ_B , μ_s , μ_{I3} Fit to ratios of antiparticle/particle: π , K, p, Λ , Ξ , K^*_0 ,

Phase diagram at chemical freezeout

Partonic energy loss in dense matter

Bjorken, Baier, Dokshitzer, Mueller, Pegne, Schiff, Gyulassy, Levai, Vitev, Zhakarov, Wang, Wang, Salgado, Wiedemann,...

Multiple soft interactions:

$$\Delta E \approx \frac{C_R \alpha_S}{4} \hat{q} L^2$$

$$\hat{q} = \frac{\left\langle k_T^2 \right\rangle_{medium}}{\lambda} \propto \alpha_S \rho_{glue}$$

Opacity expansion:

$$\Delta E = \pi C_A C_a \alpha_S^3 \int d\tau \rho_{glue}(\tau, r(\tau)) \tau Log\left(\frac{2E_{jet}}{\mu^2 L}\right)$$

Strong dependence of energy loss on gluon density ρ_{glue} : measure $\Delta E \Rightarrow$ color charge density at early hot, dense phase

Jets at RHIC

Partonic energy loss via leading hadrons

Energy loss ⇒
softening of fragmentation ⇒
suppression of leading hadron yield

$$R_{AA}(p_T) = \frac{d^2N^{AA}/dp_Td\eta}{T_{AA}d^2\sigma^{NN}/dp_Td\eta}$$

Binary collision scaling

p+p reference

Suppression of inclusive yield at 130 GeV

Both STAR and PHENIX see significant suppression

Limitation: Ambiguities in the reference spectra at 130 GeV

Au+Au and p+p: inclusive charged hadrons

p+p reference spectrum *measured* at RHIC

Suppression of inclusive hadron yield

- central Au+Au collisions: factor ~4-5 suppression
- p_T >5 GeV/c: suppression ~ independent of p_T

PHENIX observes a similar effect

So do PHOBOS ($\eta \sim 0.8$) and BRAHMS ($\eta \sim 2.0$)

PHOBOS: nucl-ex/0302015

BRAHMS: nucl-ex/0307003 Also have $\eta = 0$

Jets and two-particle azimuthal distributions

 $p+p \rightarrow dijet$

- trigger: track with p_T>4 GeV/c
- $\Delta \phi$ distribution: 2 GeV/c<p_T<p_T^{trigger}
- normalize to number of triggers

Azimuthal distributions in Au+Au

Near-side: peripheral and central Au+Au similar to p+p

Strong suppression of back-to-back correlations in central Au+Au

Other effects that might change R_{AA}

- Initial- or final-state multiple scattering ("Cronin effect")
- Nuclear modifications of the parton distributions ("shadowing and anti-shadowing")
- Gluon saturation at high energy and low x
- Hadronic re-interactions

Theory vs. data

pQCD-I: Wang, nucl-th/0305010

pQCD-II: Vitev and Gyulassy, PRL 89, 252301

Saturation: KLM, Phys Lett B561, 93

p_T>5 GeV/c: well described by gluon saturation model (up to 60% central) and pQCD+jet quenching

Final-state hadronic rescattering

Eq. (2) of Gallmeister, Greiner, Xu:

$$t_F \approx 1...1.2(E/GeV) fm/c$$

For $5 \le E_T \le 12 \text{ GeV/c}$, $\le L/\lambda \ge \text{ decreases substantially}$

FIG. 9: The suppression factor $R(p_{\perp})$ of charged hadrons at midrapidity for $\sqrt{s} = 200 \,\text{GeV}$ for $\langle L/\lambda \rangle \equiv 1, 2, 3$ (top to bottom) collisions according (in)elastic scattering on a ρ (blue) or elastic scattering on a π (green).

May also have difficulty explaining magnitude of near-side angular correlations

Is suppression an initial or final state effect?

How to discriminate? Turn off final state \Rightarrow

d+Au vs. p+p: Theoretical expectations

Inclusive spectra

If Au+Au suppression is final state

If Au+Au suppression is initial state (KLM gluon saturation: 0.75)

High p_T hadron pairs

pQCD: no suppression, small broadening due to Cronin effect

saturation models: suppression due to mono-jet contribution?

Inclusive yields relative to binary-scaled p+p

STAR: nucl-ex/0306024

$$R_{AB} = \frac{dN^{AB} / dp_T d\eta}{T_{AB} d\sigma^{pp} / dp_T d\eta}$$

 $R_{AR}(p_T)$

• d+Au : enhancement Au+Au: strong suppression

Suppression of the inclusive yield in central Au+Au is a final-state effect

PHENIX, PHOBOS, BRAHMS find similar results

nucl-ex/0306021, nucl-ex/0306025; nucl-ex/0307003

Azimuthal distributions

Near-side: p+p, d+Au, Au+Au similar $\Delta \phi$ (radians)

Back-to-back: Au+Au strongly suppressed relative to p+p and d+Au

Suppression of the back-to-back correlation in central Au+Au is a final-state effect

The strong suppression of the inclusive yield and back-to-back correlations at high p_T previously observed in central Au+Au collisions are due to final-state interactions with the dense medium generated in such collisions.

Have we found the Quark Gluon Plasma at RHIC?

We now know that Au+Au collisions generate a medium that

- is dense (pQCD theory: many times cold nuclear matter density)
- is dissipative
- exhibits strong collective behavior

This represents significant progress in our understanding of strongly interacting matter

We have yet to show that:

- dissipation and collective behavior both occur at the partonic stage
- the system is deconfined and thermalized
- a transition occurs: can we turn the effects off?

Not yet; there is still work to do