Rare B Decays at Belle & BaBar

Hiroaki Aihara University of Tokyo

Presented at 31st SLAC Summer Institute Topical Conference, August 6-8

* Excited Heavy Quark - Light Quark Mesons D**0 (cu) and D_{sJ}+ (cs) * Electroweak Penguin Decays

 $\,\ast\,$ T to $\mu\gamma$ Decays

Spectroscopy of orbitally excited heavy (Q) and light (q) quark system

 $Q\overline{q}$ meson is analogous to the hydrogen atom in the limit of $m_Q \rightarrow \infty$.

(Heavy Quark Symmetry)

 $\begin{array}{c} \mathbf{L} & \mathbf{m}_{\overline{q}} & \mathbf{s}_{1} \\ \hline & \mathbf{s}_{2} \\ \hline & \mathbf{s}_{2} \\ \hline & \mathbf{s}_{1} \\ \hline & \mathbf{s}_{1} \\ \hline & \mathbf{s}_{2} \\ \hline & \mathbf{s}_{1} \\ \hline & \mathbf{s}_{2} \\ \hline & \mathbf{s}_{1} \\ \hline & \mathbf{s}_{1} \\ \hline & \mathbf{s}_{2} \\ \hline & \mathbf{s}_{1} \\ \hline & \mathbf{s}_{1$

In
$$m_Q \rightarrow \infty$$
, **j** is a good quantum number.

For p-wave (L = 1) states,
$$1 \otimes \frac{1}{2} = \frac{1}{2} \oplus \frac{3}{2}$$
, i.e. $j = \frac{1}{2}, \frac{3}{2}$.
The levels split by $\mathbf{L} \cdot \mathbf{s}_1$ force to make the fine structure.

Each *j* state further split due to $\mathbf{L} \cdot \mathbf{s}_2$, $\mathbf{s}_1 \cdot \mathbf{s}_2$, and the tensor force to make the hyperfine structure $\propto 1/m_Q m_q$.

$$J^{p} = 2^{+}$$

 $J = 3/2$
 $J^{p} = 1^{+}$
 $J^{p} = 1^{+}$
 $J^{p} = 1^{+}$
 $J^{p} = 0^{+}$
 $J = 0 \dots$

$$\mathbf{J} = \frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 1, \quad \frac{3}{2} \otimes \frac{1}{2} = 1 \oplus 2 \quad \Rightarrow J_{j}^{p} = (0_{1/2}^{+}, 1_{1/2}^{+}), \quad (1_{3/2}^{+}, 2_{3/2}^{+})$$

Two axial vector states, $1_{1/2}^+$ and $1_{3/2}^+$, can mix.

Why care ?

* Their mass spectra and decay widths provides tests of QCD, in particular, the confinement potential.

- QCD motivated quark potential models.

Coulomb $(\propto \frac{1}{r})$ + linear $(\propto r)$

- Heavy Quark Effective Theory
- Chiral symmetry of QCD

Heavy quark spectroscopy started here at SLAC in 1974.

Expected decays of
$$L = 1 (c\overline{u})$$
 and $(c\overline{s})$ mesons

Conservation of angular momentum (J and j) and parity

$$0_{1/2}^+ \rightarrow 0^- 0^-$$
 via an S wave (large phase space): broad $\Gamma \ge 200$ MeV

$$1^+_{1/2} \rightarrow 1^-0^-$$
 via a S wave : broad $\Gamma \ge 200$ MeV

$$1^+_{3/2} \rightarrow 1^-0^-$$
 via a D wave (small phase space) : narrow $\Gamma \approx 20$ MeV

 $2^+_{3/2} \rightarrow 0^-0^-$ or 1^-0^- via a D wave : narrow $\Gamma \approx 20$ MeV

 $(1_{3/2}^+, 2_{3/2}^+)$ doublets have been observed for both $c\overline{u}$ and $c\overline{s}$.

PDG2002

сū	mass(MeV/ c^2)	width(MeV)	modes
$D_1(2420)^0$	2422.2 ± 1.8	18.9 ^{+4.6}	$D^{*}(2010)^{+}\pi^{-}$
$D_2^*(2460)^0$	2458.9 ± 2.0	23 ± 5	$D^+\pi^-, D^*(2010)^+\pi^-$

Similarly the j=3/2 pair of $c\overline{s}$ has been observed.

$c\overline{s}$	mass(MeV/ c^2)	width(MeV)	modes
$D_{S1}(2536)^+$	$2535.35 \pm 0.34 \pm 0.5$	< 2.3	$D^{*}(2010)^{+}K^{0}, D^{*}(2007)^{0}K^{+}$
$D_{SJ}(2573)^{+}$	$2572.4 \pm 1.5^{+5}_{-4}$	15	D^0K^+

What about j=1/2 pairs?

Quark models predict 2.4 ~2.5 GeV/c² for $c\overline{u}$ and 2.4~2.6 GeV/c² for $c\overline{s}$.

Expected decay modes : broad resonances

$$c\overline{u} \rightarrow D^{+}\pi^{-}, \quad D^{*+}\pi^{-}$$

 $c\overline{s} \rightarrow D^{0}K^{+}, \quad D^{*0}K^{+}$

An unbinned fit to B to $D\pi\pi$ Dalitz plot is performed including signal plus virtual states and background. Helicity analysis is also done.

$$D_{1/2}^{+}(c\overline{u}) \qquad M(D_{0}^{*0}) = (2308 \pm 17 \pm 15 \pm 28) \text{ MeV}/c^{2}$$

$$\Gamma(D_{0}^{*0}) = (276 \pm 21 \pm 18 \pm 60) \text{ MeV}$$

Belle : $B^- \rightarrow D^{*+}\pi^-\pi^-$ analysis hep-ex/0307021

What about $C\overline{S}$ system?

April 28, 2003

Comment: Marcello Giorgi BaBar Spokesperson (650) 926-2385 giorgi@slac.stanford.edu

SLAC experiment identifies new subatomic particle

Relevant Web URLs:

http://www.slac.stanford.edu/slac/media-info/20030428/photos.html http://www-public.slac.stanford.edu/babar/

Physicist Antimo Palano representing the BABAR experiment presented the evidence for the identification of a new subatomic particle named Ds (2317) to a packed auditorium on Monday 28th April at the Department of Energy's Stanford Linear Accelerator Center (SLAC). Initial studies indicate that the particle is an unusual configuration of a 'charm' quark and a 'strange' anti-quark. A scientific paper was sent for publication in Physical Review Letters on April 11th 2003.

The New Narrow Sate at 2317 MeV/c² in $M(D_s\pi^0)$!

Confirmation of $D_{sJ}(2317)$ by CLEO and Belle

CLEO 13.5 fb⁻¹ hep-ex/0305017

 165 ± 20 evts

$$\Delta M = 350.4 \pm 1.2 \pm 1.0 \text{ MeV}/c^2$$

$$M = 2318.5 \pm 1.2 \pm 1.0 \text{ MeV}/c^2$$

$$\sigma = 8.4^{+1.4}_{-1.2} \text{ MeV}/c^2$$

$$\sigma_{\text{det}} = 6.4 \pm 0.4 \text{ MeV}/c^2$$

Belle 86.9 fb⁻¹ hep-ex/0307052

Note $M < M_{D^0}(1864.5) + M_K(494) = 2358.5 \text{ MeV}/c^2$

The New Narrow Sate at 2460 MeV/ c^2 in M($D_s \pi^0 \gamma$)

BaBar presented $D_s^*\pi^\circ$ peak near 2460 in their original publication, but did not claim a signal. Recently agreed that it was a signal.

Note $M < M_{D^{*0}}(2006.7) + M_K(494) = 2500.7 \text{ MeV}/c^2$

Spin - parity of New Narrow States at 2317 and 2460 $D_{SI}(2317) \rightarrow D_{S}(0^{-})\pi^{0}(0^{-}) \Rightarrow \text{most likely } 0^{+}$ $D_{SI}(2460) \rightarrow D_{S}^{*}(1^{-})\pi^{0}(0^{-}) \Rightarrow \text{most likely } 1^{+}$ Belle continuum analysis Same is true for dipion decays Radiative decay $(D_{SI} \rightarrow D_S \gamma)$ is allowed for 0⁻ and 1⁺, $(D_{sJ} \rightarrow D_s \pi^+ \pi^-).$ but forbidden for 0^+ and 1^- . Events/3MeV M(2460) 152 ± 18 events *M*(2536) Events/5MeV 60 ± 12 events $\Delta M = 491 \pm 1.3 \pm 2.6 \text{ MeV}/c^2$ $M = 2459.5 \pm 1.3 \pm 2.7 \text{ MeV}/c^2$ 3030 25201520 1010 0.4M(Ds y) - M(Ds) GeV/c² 0 0.425 0.45 0.475 0.5 0.525 0.55 0.575 0.6 0.625 0.65 $D_{sJ}(2460) \rightarrow D_{s\gamma} \text{ observed.} \Rightarrow 0^{-}, 1^{+}$ GeV/c² $M(Ds \pi^+ \pi^-) - M(Ds)$ $D_{sl}(2317) \rightarrow D_{s\gamma} \text{ not observed.} \Rightarrow 0^+, 1^-$ 15

Helicity angle in $D_{sJ}(2460) \rightarrow D_s^*(2112)\pi^0$, $D_s^*(2112)\pi^0 \rightarrow D_s\gamma$ (BaBar preliminary) Inconsistent with $J^P = 0^-$. [nb: no prediction for 1^+ , 2^- .]

Belle observes the two states in B decays $B \rightarrow DD_{sJ}$ based on 123.7 million **BBbar** events Ŵ D В efficiency ~ 10^{-4} $D_s(2317) \rightarrow \pi^o D_s$ 20 $\Rightarrow Br = (8.5^{+2.1}_{-1.9} \pm 2.6) \times 10^{-4}$ 10 Events/(0.01 GeV) 0 20 $D_s(2460) \rightarrow \pi^o D_s^*$ Belle $\Rightarrow Br = (17.8^{+4.5}_{-3.9} \pm 5.3) \times 10^{-4}$ 10 0 $D_s(2460) \rightarrow \gamma D_s$ 20 $\Rightarrow Br = (6.7^{+1.3}_{-1.2} \pm 2.0) \times 10^{-4}$ 0 ⊑ 2.2 2.3 2.4 2.5 2.6 hep-ex/0307041 $M(D_{sJ})$ (GeV/c²)

Belle Angular analysis in B to $DD_{sJ}(2460) \rightarrow DD_{s\gamma}$

Helicity angle consistent with 1^+ (angle of D_s in D_{sJ} restframe wrt to D_{sJ} direction in B rest frame)

Summary of p-wave charm mesons

* Broard, as expected, j=1/2 cū doublets observed :

 $D_0^{*0}(2308)$ & $D_1^{0'}(2427)$

* Narrow, unexpected, $c\overline{s}$ states observed and their spinparity determined : $D_{sJ}(2317) = D_{s0}^{*+}(2317)$ $D_{sJ}(2460) = D_{s1}^{+}(2457)$

QCD potential models need to reconcile with the above experimental findings.

Electroweak Penguin Decays

New particles can contribute to the decay rate via loops. "Search for new physics using quantum (penguin) loop effects."

B to KII first seen by Belle in 2001. (PRL88, 021801 (2002))

Belle 60fb⁻¹ (2002) update - 142 fb⁻¹ = 152million BBbar update next week -

- K: K^\pm or K^0_S
- $egin{aligned} & K^*:\,K^+\pi^-,\,K^0_S\pi^+,\ & K^+\pi^0 ext{ with }\ & |m_{K\pi}-m_{K^*}|\ & <75 ext{ MeV}/c^2 \end{aligned}$
- a pair of e or μ $p(e) > 0.5 \,{
 m GeV}/c$ $p(\mu) > 1.0 \,{
 m GeV}/c$ $m_{\ell\ell} > 0.2 \,{
 m GeV}/c^2$

• Veto $J/\psi,\,\psi(2S)$

BaBar 81fb⁻¹ (88.5 million BBbar) data

 $Br(B \rightarrow K l^+ l^-) = (0.68^{+0.17}_{-0.15} \pm 0.04) \times 10^{-6} \quad (7\sigma)$

First evidence for B to K*II seen by BaBar

First measurement of semi-inclusive B to Xsll by Belle

• X_s : (a) X_se⁺e⁻ (b) X_sµ⁺µ⁻ 40 • 1 K^{\pm} or K^0_S 30 • $0-4 \pi (\leq 1 \pi^0)$ Entries / (2.5 MeV/c²) 0 0 0 0 0 • $m_{X_s} < 2.1 \, {
m GeV}/c^2$ a pair of e or μ $p(e) > 0.5 \,\mathrm{GeV}/c$ (d) $X_{s}e^{+}\mu^{-}$ + c.c. (c) X_sI⁺I⁻ $p(\mu) > 1.0 \, {
m GeV}/c$ $m_{\ell\ell}~>0.2\,{
m GeV}/c^2$ 40 • J/ψ , $\psi(2S)$ are vetoed 20 60 fb⁻¹ 5.22 5.24 5.26 5.28 5.2 5.22 5.24 5.26 5.28 5.2 M_{bc} (GeV/c²) Clear signal (5.4 σ)

Semi-inclusive B to Xsll by Belle

First measurement, using 60 fb^{-1}

[Phys.Rev.Lett.90,021801(2003]

K and *K*^{*} yields are compatible with exclusive analysis

Presence of electroweak penguin established. More data to look for a sign of new physics.

$\tau \rightarrow \mu \gamma$

Lepton Flavor Violating Decay of au Lepton

Similar to *b* to *s* γ , but highly suppressed. SUSY predicts Br~10⁻⁷ to 10⁻⁹ $Br(\tau \rightarrow \mu\gamma) \approx 10^{5-6} \times Br(\mu \rightarrow e\gamma)$

Belle $\tau \rightarrow \mu \gamma$ Search

Two oppositely charged particles plus 1 or more photons consistent with

 $\tau \rightarrow \mu \gamma$ and

$$\tau \rightarrow \operatorname{non}\mu + \nu + (0 \text{ or more}) \gamma s$$

Difficulty of this analysis is due to a large amount of background mostly from $a^+a^- = a^+a^-$ and $u^+u^-u^-$

$$e^+e^- \rightarrow \tau^+\tau^-\gamma$$
 and $\mu^+\mu^-\gamma$

Photons are from the initial state radiation.

Impose presence of neutrino. $m_v^2 \approx E_{miss}^2 - \mathbf{p}_{miss}^2 \approx 0$ 32

$$Br(\tau \to \mu \gamma) < 3.2 \times 10^{-7} \ (@90\% CL)$$

Conclusion

* B factory is charm factory :

$$D_0^{*0}(2308) \& D_1^{0'}(2427) D_{sJ}(2317) = D_{s0}^{*+}(2317)$$

 $D_{sJ}(2460) = D_{s1}^{+}(2457)$

* B factory is penguin factory :

$$b \rightarrow s \ell^+ \ell^-$$
 established.

* B factory is tau factory.

New upper limit for $\tau \rightarrow \mu \gamma$