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A new method for constructing of composite coherent states of the hydrogen atom, based on
the dynamical group approach and various schemes of reduction to subgroups, is presented.
A wide class of well-localized (Gaussian) hydrogenic wave packets for circular and elliptic
orbits is found using the saddle-point method.

1 Introduction

In recent years, new experimental techniques opened way to creation and study of high ener-
gy (Rydberg) states in atoms. These states are described by approximate hydrogenic wave
functions with very large principal quantum numbers. Some new effects, as the dynamical
localization and the dynamical chaos, have attracted considerable interest. Explanation of these
phenomena uses classical equations of motion [1]. It is reasonable to look for an alternative
quantum description on the basis of semi-classical approximations, which is naturally provided
by a coherent states (CS) formalism.

In Section 2, starting from the O(4, 2) dynamical group approach [2] and using three schemes
of reduction to subgroups [3]: O(4, 2) ⊃ O(4) ∼ O(3) ⊗ O(3), O(4, 2) ⊃ O(2, 2) ∼ O(2, 1) ⊗
O(2, 1), O(4, 2) ⊃ O(3)⊗O(2, 1), we construct composite CS in physical and auxiliary (“tilted”)
representations [4]. We use two types of generating operators of CS with different procedures
of transition to a classical limit. In particular, the generating operators for Perelomov SO(3)
and SO(2, 1) CS [5], Barut–Girardello SO(2, 1) CS [2,6], generalized hypergeometric CS [7], Brif
SO(3) and SO(2, 1) algebra eigenstates [8], may be used for this purpose. The CS are separated
into two classes with different semi-classical behavior.

The hydrogenic CS wave functions have a complicated form, so it is reasonable to use sim-
plified asymptotic expressions. In Section 3 we describe a method for asymptotic estimate and
obtain well-localized hydrogenic wave packets for circular and elliptic orbits. A similar asymp-
totic estimate method is used in the theory of CS path integrals. We believe that the approach
discussed in this paper can be applied to computation of the CS path integrals for the hydrogen
atom and other systems with known dynamical symmetry.

2 The hydrogen atom: O(4, 2) dynamical group
and reductions to subgroups

Denote generators of the dynamical group O(4, 2) of the hydrogen atom [2, 4] (the group of
rotations in six-dimensional pseudo-Euclidean space with a metric g = diag(1, 1, 1, 1,−1,−1))
as Lαβ (in the notation used in [3]):

Lα0 = (r × p)α, Lα1 =
(
rαp2 − 2pαrp + rα

)
/2,

Lα2 = −rpα, Lα3 =
(
rαp2 − 2pαrp − rα

)
/2, (1)
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L01 =
(
rp2 − r

)
/2, L02 = rp − i, L03 =

(
rp2 + r

)
/2.

The Schrödinger equation for the hydrogen atom reads (H − E)|Ψ〉 = 0 with H = p2/2 − a/r.
After multiplication by r it can be rewritten in terms of the generators (1) [4, 9, 10]:

r(H− E)|Ψ〉 = {(L03 + L01)/2 − E(L03 − L01) − a}|Ψ〉 = 0. (2)

The unitary transformation

|Ψ〉 = exp(iθL02)|Ψ〉, tanh θ = (1 + 2E)/(1 − 2E),

reduces (2) to(L03 − a/
√−2E

)|Ψ〉 = 0.

The eigenstates of L03 may be chosen in this auxiliary representation (AR) as |n, l, m〉sph or
|n, n1, n2, m〉par with n = a/

√−2E, in the spherical or parabolic coordinates. An inverse trans-
formation{ |n, l, m〉sph

|n, n1, n2, m〉par

}
= exp(−iθL02)

{ |n, l, m〉sph

|n, n1, n2, m〉par

}
,

produces the physical representation (PR) of the eigenvectors.
Consider three types of reduction to subgroups and corresponding Lie algebras:

(a) O(4, 2) ⊃ O(4) ∼ O(3) ⊗ O(3), o(3) ⊕ o(3) = {P(+)
α } ⊕ {P(−)

α },
(b) O(4, 2) ⊃ O(2, 2) ∼ O(2, 1) ⊗ O(2, 1), o(2, 1) ⊕ o(2, 1) = {Q(+)

α } ⊕ {Q(−)
α }, (3)

(c) O(4, 2) ⊃ O(3) ⊗ O(2, 1), o(3) ⊕ o(2, 1) = {Lα0} ⊕ {L0α},
where

P(±)
α = (Lα0 ± Lα3)/2, Q(±)

α = (L0α ± L3α)/2.

For these cases the space R of bound states of the hydrogen atom is decomposed as follows:

(a) R = ⊕n≥1

{
R(O(3)n − 1, (n1)) ⊗ R(O(3)n − 1, (n2))

}
,

(b) R = ⊕m∈Z

{
R(O(2,1)1 + |m|, (n1 + 1

2(m − |m|)))
⊗ R(O(2,1)1 + |m|, (n2 + 1

2(m − |m|)))
}

,

(c) R = ⊕l≥0

{
R(O(3)2l, (l − m)) ⊗ R(O(2,1)2l + 2, (n − 1 − l))

}
,

where R(GS, (K)) =
{|GS, (K)〉} denotes the irreducible representation space of a group G =

O(3) or O(2, 1) with generators {Eα}, for which we have

E3|GS, (K)〉 = (S/2 − εGK)|GS, (K)〉,
(E2

1 + E2
2 + εGE2

3)|GS, (K)〉 = (S/2 − εGS2/4)|GS, (K)〉,
where εO(3) = 1, εO(2,1) = −1, and the representation space R(GS, (K)) is spanned by the set
of orthonormal eigenvectors |GS, (K)〉 . The vector subspaces

R
[+]
0 = {|n, n − 1, n − 1〉sph} = {|n, 0, 0, n − 1〉par},

R
[−]
0 = {|n, n − 1,−n + 1〉sph} = {|n, n − 1, n − 1,−n + 1〉par},
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with maximal m = n − 1 or minimal m = −n + 1 values of the magnetic quantum number
correspond to the circular orbits [11]. The vectors from R

[±]
0 play the role of reference vectors in

decompositions of R. On the other hand, R
[−]
0 and R

[+]
0 are irreducible spaces of O(2, 1) (S = 1).

The corresponding O(2, 1) Lie algebras have the form

H[±]
1 = (±L11 − L22)/2, H[±]

2 = (L21 ± L12)/2, H[±]
3 = (L03 ± L30)/2,

where ± corresponds to the subspace R
[±]
0 with m = ±(n − 1). Following [12], we construct

coherent states in two stages. At first, using the operators {H[±]
α }, we construct the circular

orbits CS in R
[±]
0 . Next, we construct CS in the global space R using one of the generator sets

from (3). Each reduction scheme corresponds to a specific construction method of the hydrogen
atom CS:

(a) |O(4)ω[±], τ, η〉 = DI(O(3)τ, (P(+)
α ))DI(O(3)η, (P(−)

α ))|ω[±]〉,
(b) |O(2,2)ω[±], τ, η〉 = DI(O(2,1)τ, (Q(+)

α ))DI(O(2,1)η, (Q(−)
α ))|ω[±]〉, (4)

(c) |O(3)⊗O(2,1)ω[±], τ, η〉 = DI(O(3)τ, (Lα0))DI(O(2,1)η, (L0α))|ω[±]〉,
where

|ω[±]〉 = DII(O(2,1)ω, (H[±]
α ))|1, 0, 0, 0〉par (5)

is the circular orbit CS. We use uniform notation for the generating operator of CS:

|GS, (ω)〉 = DΩ(Gω, (Eα))|GS, (0)〉,
where G = O(3) or O(2, 1), and Ω = I or II. An important point is that one should use two
types of generating operators of CS, with different procedures for transition to the classical limit:
S → ∞ (Ω = I); |ω| → ∞ (Ω = II).

There exist many algorithms to construct coherent states of dynamical groups and quantum
physical systems (see review [13]). In most cases these CS provide a transition to the “classical
limit” in some sense. However, a selection of the CS for a specific physical system must be done
with great care. It is essential to take into account not only the symmetry of a model, but also
the type of semiclassical behavior. We consider some special types of CS and clarify conditions
of quantum-classical correspondence.

Usually CS |ξ〉 is called semiclassical if an overlapping distribution function |〈ξ |ξ + δξ〉|2 has
a sharp peak for small |δξ|, and becomes singular delta-shaped function in the classical limit,
which can be written in the form

〈ξ |η〉 cl. lim.−→ 0, ξ 
= η, 〈ξ |ξ〉 = 1. (6)

Satisfaction of the condition

〈ξ|E2
α |ξ〉 / (〈ξ|Eα |ξ〉)2 cl. lim.−→ 1, (7)

where Eα are elements of the Lie algebra L, gives another evidence of semiclassical properties of
the CS |ξ〉. The conditions (6), (7) are satisfied in the cases: the Barut–Girardello O(2, 1) CS,
|ξ| → ∞, L = o(2, 1); the Perelomov O(2, 1) CS, S → ∞, L = o(2, 1); the Perelomov O(3) CS,
S → ∞, L = o(3).

An extended class of semiclassical CS follows from a definition of the generalized hypergeo-
metric CS [7]:

|ξ〉 = N−1
ξ

∞∑
n=0

√√√√√√√√
p∏

i=1
(αi)n

q∏
j=1

(ρj)n

ξn

√
n!

|n〉, (8)
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where (α)n is the Pochhammer symbol and pFq denotes the generalized hypergeometric function;
ξ is a complex argument; integers αi are negative for i = 1, . . . , l and positive for i = l+1, . . . , p;
0 ≤ l ≤ p; ρj are positive real numbers. The overlapping function for this states has the form:

〈ξ|ζ〉 = N−1
ξ N−1

ζ pFq((αp), (ρq), (−1)lξ∗ζ), 〈ξ|ξ〉 = 1.

Starting from the definition (8), let us consider a number of special realizations:
(i) p = q + 1 ≥ 1, ρj = 1, αj = S, S = 1, 2, . . .; in the special case p = 1 the state (8) is the

Perelomov O(2, 1) CS [5];
(ii) p = q + 1 ≥ 1, ρj = 1, αj = −S, S = 1, 2, . . .; in the special case p = 1 the state (8) is the

Perelomov O(3) CS [5];
(iii) q ≥ p, ρj = 1, αj = S, S = 1, 2, . . .; in the case p = q = 0 the state (8) is the CS of a

harmonic oscillator [14]; in the case p = −1, q = 0 this is the Barut–Girardello CS [6].
It can be shown directly that for the cases (i) and (ii) the requirement (6) is satisfied for

the limiting condition S → ∞ (Ω = I), while for the case (iii) the proper condition is |ξ| → ∞
(Ω = II).

For comparison, we consider briefly an alternative extension of a family of CS for O(3) and
O(2, 1) groups – the Brif’s algebra eigenstates [8]:

(β1E1 + β2E2 + β3E3) |ζ, β1, β2, β3〉 = ζ |ζ, β1, β2, β3〉 ,

where |ζ, β1, β2, β3〉 is a linear superposition of
∣∣GS, (K)

〉
with different K. In the general case

b = (β2
1 + β2

2 + εGβ2
3)1/2 
= 0 and for ζ = (l − εGS/2)b, l = 0, 1, 2, . . ., the condition (6) is

satisfied at S → ∞ (Ω = I). At the same time, in the degenerate case b = 0 the O(2, 1) algebra
eigenstates are semiclassical at the both S → ∞ and |ζ| → ∞ limiting conditions (Ω = I and II).

These examples do not cover all diversity of CS with semiclassical behavior.

3 Semiclassical asymptotics of coherent states wave functions

We use the standard saddle-point method of asymptotic estimate for integrals

F (λ, x) =
∫

c
exp{λf(x, t)}φ(x, t)dt,

where λ  1, x = {x1, x2, . . . , xn} and t = {t1, t2, . . . , tm}; f(x, t) and φ(x, t) are holomorphic
functions; c is a n-dimensional smooth manifold deformed to reach a minimax (a saddle point
is nonsingular). The asymptotic formula reads [15]

F (λ, x) ∼ (2π/λ)m/2 exp{λf(x, t0(x))}φ(x, t0(x))/
√

det [−µ (x, t0 (x))], (9)

where t = t0(x) is a solution of the system of equations ∂f/∂ti = 0, i = 1, . . . , m, for a stationary
point, and µij = ∂2f/∂ti∂tj . We also assume that |F (λ, x)| has the delta-shaped peak near the
point x = x00. Since |F (λ, x)| ∼ | exp{λf(x, t0(x))}| ∼ exp{λRef(x, t0(x))}, we can find x00

as an extremal point of the real part of the exponent. The supplementary equations for the
stationary point have the form

∂f(x, t0(x))
∂xi

+ c.c. =
∂f(x, t)

∂xi

∣∣∣
t=t0(x)

+ c.c. = 0.

Substituting the second-order expansion of f(x, t0(x)) at x = x00 into (9), we find the desired
expression for the asymptotic estimate

F (λ, x) ∼ (2π/λ)m/2
√

det [−µ00]
−1

φ00
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× exp
{
λf00 + iλhTδx + (λ/2) δxT

(
σ00 − γT

00 µ−1
00 γ00

)
δx
}

,

with

σ00 =
{

∂2f00

∂xk∂xl

}
, γ00 =

{
∂2f00

∂xl∂tr

}
, h =

{
Im
[
∂f00

∂xk

]}
,

where we use the notation (·)00 ≡ (·)|x=x00, t=t00
for different functions given in the point

(x00, t00), t00 ≡ t0(x00).
Consider in detail a special case of hydrogenic CS wave function. Using the formulae (4c)

and (5) with generating operators for the Perelomov CS (P) and the Barut–Girardello CS (BG),
we obtain

|ω, 0, η〉 = DI(O(2,1)
P η, (L0α))DII(

O(2,1)
BG ω, (H[±]

α ))|1, 0, 0〉sph.

Noting that variation of τ in (4c) implies only a rotation of the CS wave function without change
of its shape, we can set τ = 0. Using the coordinate hydrogenic wave function in the auxiliary
representation

〈r|n, l, m〉 =
2

(2l + 1)!

√
(n + l)!

(n − l − 1)!
(2r)le−r

1F1(l + 1 − n, 2l + 1, 2r)Ylm(θ, φ),

and in the physical representation

〈r|n, l, m〉 =
1
n2

〈r
n
|n, l, m〉,

we obtain the explicit form for the CS:

〈r|ω, 0, η〉 =
1√

I0(2|ω|)
∞∑
l=0

∞∑
n=l+1

ωl

l!
(1 − |η|2)l+1√

(2l + 1)!

√
(n + l)!

(n − l − 1)!
ηn−l−1〈r|n, l, m〉.

Performing the summation we arrive at

〈r|ω, 0, η〉 =
1√

πI0(2|ω|)
1 − |η|2
(1 − η)2

exp
(
−r

1 + η

1 − η

)
I0

(
2
√−ωr+(1 − |η|2)

1 − η

)
,

where r+ = r exp(iφ), r = |r| and I0 denotes the modified Bessel function. The asymptotic
estimate (obtained directly or by the saddle-point method) for the absolute value of the CS
wave function has the form:

|〈r|ω, 0, η〉|2 ≈ 1
2π3/2|ω|1/2

(1 − |η|2)2
|1 − η|4 exp

{
− 1

2|ω|
(1 − |η|2)2
|1 − η|4

(
∆x2 + ∆y2 + 2∆z2

)}
,

where ∆x = x − x0, ∆y = y − y0; the point with coordinates

x0 = 〈n〉∞(e − cos θ), y0 = 〈n〉∞
√

1 − e2 sin θ

lies on the elliptic orbit with an eccentricity e:

〈n〉∞ =
|ω|(1 + |η|2)

1 − |η|2 , e =
2|η|

1 + |η|2 .

In a similar way one can find the asymptotic estimate for the physical CS wave function, but it is
omitted here due to its complexity. In this case only the saddle-point method with interchange
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of summation and integration can be used. It is remarkable that in this case the system of
equations for the saddle point admits analytical solution. In a special case of circular orbits the
asymptotic estimate for auxiliary and physical representations simplifies to

〈r0 + ∆r|ω, 0, 0〉 ≈ 1√
2π3/4|ω|1/4

exp
{

i|ω|∆φ − z2

2|ω| −
|ω|∆φ2

4
− ∆ρ2

4|ω| +
i∆ρ∆φ

2

}
, (10)

where r = (ρ cos φ, ρ sinφ, z), ∆φ = φ − φ0, ∆ρ = ρ − |ω|, and

〈r0 + ∆r|ω, 0, 0〉 ≈ 1√
5π3/4|ω|9/4

exp
{
i|ω|∆φ− z2

2|ω|3 −
|ω|∆φ2

10
− ∆ρ2

10|ω|3 +
2i∆ρ∆φ

5|ω|
}

, (11)

where r = (ρ cos φ, ρ sinφ, z), ∆φ = φ − φ0, ∆ρ = ρ − |ω|2. The functions (10) and (11) are
related by the following equation:

〈r1|ω, 0, 0〉 =
∫

dr2

r2
K(r1, r2)〈r2|ω, 0, 0〉,

where

K(r1, r2) ≈ 1√
10π3ρ5

2

exp
{

iρ2∆φ − z2
2

2ρ2
− z2

1

2ρ3
2

− ρ2∆φ2

10
− ∆ρ2

10ρ3
2

+
2i∆ρ∆φ

5ρ2

}
,

and ∆φ = φ1 − φ2, ∆ρ = ρ1 − ρ2
2.
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