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It is shown that the relativistic equations of motion can be decomposed into two Newto-
nian equations. The mapping between momenta of the system of Newtonian and relativistic
equations is given by Vieta’s formulae of a quadratic polynomial – the characteristic poly-
nomial of the relativistic dynamics. In the present contribution we extend this scheme to
obtain an extension of the relativistic mechanics. We suggest extended dynamic equations,
which, with respect to the definite set of evolution parameters, are decomposed into three (n)
Newtonian equations. The corresponding mapping is built on the basis of Vieta’s formulae
of n-degree polynomial. This polynomial we define as the characteristic polynomial of the
extended mechanics. In the polar representation the solutions of the dynamic equations are
given by Jacobi and Weierstrass (hyper) elliptic functions.

1 Introduction

The principle of relativity does not necessarily imply the quadratic metric in the space-time
plane. The Lorentz-invariance may be violated in the same way as it has been violated the
Galilei-invariance. A violation, rather, will be stipulated with the increasing of the energy of
motion. That is to say, the relativistic mechanics is not consummate step of the extension of the
Newtonian mechanics. The former can be extended in the same manner, namely, by involving
the energy conservation law into the system of dynamic equations.

In this paper we present one faithful way of extension of the relativistic equations of motion.
First of all (Section 2) we show that the relativistic equations of motion can be decomposed into
two Newtonian equations with different evolution parameters. For this decomposition we use the
Vieta’s mapping of a quadratic polynomial. The last is defined as a characteristic polynomial of
the relativistic dynamics. Further (Section 3), we extend the relativistic dynamics in such a way
that the extended equations of motion will decomposed into three Newtonian equations. The
dynamic equations of the extended mechanics are constructed by using Vieta’s mapping of the
characteristic cubic polynomial. The solutions in the polar representation are given by Jacobi
and Weierstrass elliptic functions. In Section 4, the scheme elaborated in Section 3 generalized
in order to obtain an extended mechanics with n-degree characteristic polynomial.

2 Decomposition of the relativistic equation
into two Newtonian equations

Consider a motion of the relativistic particle under potential field V (r). With respect to the
proper-time these equations are written as

d�P

dτ
=

1
mc

�E P0,
dP0

dτ
=

1
mc

( �E · �P ), �E = −�∇V (r), (1)
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d�r

dτ
=

�P

m
,

dt

dτ
=

P0

mc
, (2)

These equations imply the first integral of motion:

P 2
0 − P 2 = M2c2. (3)

Let us represent the relationship (3) in the following factorized form

c2P 2 = c2P 2
0 − m2c4 =

(
cP0 − mc2

) (
cP0 + mc2

)
. (4)

In the non-relativistic limit

cP0 − mc2 → p2

2m
.

Introduce two kinetic energies by definition

p2

2m
:=

(
cP0 − Mc2

)
,

q2

2µ
:=

(
cP0 + Mc2

)
, (5)

Here we use the following units: p has a dimension of a momentum, q and µ have a dimension
of an energy.

In these terms the square of momentum P in (4) is represented as a product of two kinetic
energies

c2P 2 =
p2

2m

q2

2µ
. (6)

The linear combinations of the formulae (5) give the following expressions for P0 and Mc2:

cP0 =
1
2

(
q2

2µ
+

p2

2m

)
, Mc2 =

1
2

(
q2

2µ
− p2

2m

)
. (7)

The expressions for P and P0 from (6) and (7) substitute into projection of (1), (2), on the
direction of momentum

�n =
�P

P
.

On making equal the expressions at p and q we come to the following evolution equations for p
and q [1]:

(a)
dp

dτ
= −(�n · �∇)V (r)

q

µ
, (b)

dq

dτ
= −(�n · �∇)V (r)

p

m
, (c)

d�r

dτ
= �n

p

m

q

µ
, (8)

with the first integral

q2

2µ
− p2

2m
= 2Mc2.

Now, let us exchange the parameter of evolution τ in (8) by a new time-like parameter of
evolution dtp = dτ q

µ . With respect to the new time-parameter (8) are reduced into Newtonian
equations

dp

dtp
= −(�n · �∇)V (r),

dr

dtp
=

p

m
. (9)
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In a same manner we obtain another Newtonian equation:

d

d(ctq)
q = −(�n · �∇)V (r),

dr

d(ctq)
=

q

µ
, dτ

p

m
= d(ctq). (10)

Thus, (8) are decomposed into two Newtonian equations of motion: (9) and (10) with different
evolution parameters (times).

Equations (1), (2) can be written in the polar representation:

P = Mc sinh(φ), P0 = Mc cosh(φ),

where φ obeys the equation

dφ

dτ
=

e

mc
( �E · �n).

In this representation for p and q we obtain

p√
2m

=
√

2Mc sinh
(

φ

2

)
,

q√
2µ

=
√

2Mc cosh
(

φ

2

)
.

Renormalize the values p, q by

p = p
1√
2m

, q = q
1√
2µ

.

Within these designations the formulae (6) and (7) are written as

c2P 2 = p2q2, 2cP0 =
(
q2 + p2

)
,

which are nothing else than Vieta’s formulae for the quadratic equation

X2 − 2cP0X + c2P 2 = 0.

This polynomial is the characteristic polynomial of the relativistic mechanics [2].

3 Extended relativistic mechanics
with cubic characteristic polynomial

In the previous section we have shown that the relativistic equations of motion can be decom-
posed into two Newtonian equations. In this section we seek such an extension of the relativistic
equations of motion which in a similar manner can be decomposed into three Newtonian equa-
tions.

Let us start from the set of three Newtonian equations written with respect to different
evolution parameters (c = 1):

dp

dtp
= −(�n · �E),

dq

dtq
= −(�n · �E),

dh

dth
= −(�n · �E). (11)

In order to obtain this set of Newtonian equations from unique system of equations we should
extend (8) in the following way

dp

ds
= (�n · �E)

q

µ

h

µh
,

dq

ds
= (�n · �E)

p

m

h

µh
,

dh

ds
= (�n · �E)

p

m

q

µ
, (12)
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dr

ds
=

p

m

q

µ

h

µh
. (13)

It is easily seen that these equations are reduced into (8) by exchanging the evolution parame-
ter ds by dτ = h

µh
ds. From (12) we obtain three Newtonian equations (12) by using the following

formulae for the evolution parameters

dτ
qh

µµh
= dtp, dτ

hp

mµh
= dtq, dτ

pq

mµ
= dth.

Now, let us construct analogous mapping as we have built in the previous section, but for the
triplet of variables

{
p2, q2, h2

}
. The expression for the momentum we obtain from (13)

P = p
h

µh

q

µ
. (14)

In the polar representation momenta p, q, h are represented by Jacobi elliptic functions of
imaginary argument:

p =
√

mµ sc (φ, k), q = µnc (φ, k), h = µh dc (φ, k),

where k = µ/µh, and the “angle” φ obeys the equation

dφ

ds
= (�n · �E)

1√
mµ

.

In the sequel we shall use the set of dimensionless variables. For that purpose define

p3 :=
1√
k

h

µh
, p2 :=

q

µ
, p1 :=

p√
mµ

.

Then (12) in the polar representation are written in the following symmetric form

1√
k

dp1

dφ
= p2p3,

1√
k

dp2

dφ
= p3p1,

1√
k

dp3

dφ
= p1p2. (15)

Correspondingly, re-define (14) by

P :=
1√
k

1√
mµ

P = p1p2p3. (16)

Evolution equations for the squares p2
1, p2

2, p2
3 are derived from (15):

1√
k

dp2
k

dφ
= 2p1p2p3 = 2P, k = 1, 2, 3. (17)

By using these equations calculate derivative of P with respect to φ. In the process of evaluation
we shall introduce additional variables P1, P2 as algebraic functions of p2

1, p2
2, p2

3. The first
equation is:

1√
k

dP

dφ
= 2P2, (18)

where

P2 =
1
2

(
p2
1p

2
2 + p2

2p
2
3 + p2

3p
2
1

)
. (19)
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Further, by evaluating the derivative of P2, we get

1√
k

dP2

dφ
= 6PP1, (20)

where

P1 =
1
3

(
p2
1 + p2

2 + p2
3

)
. (21)

The next differentiation of P1 brings up the system of equations for the set of variables {P, P1, P2}:
1√
k

dP1

dφ
= 2P. (22)

Notice that the mapping given by formulae (16), (19), (21) is nothing else than Vieta’s formulae
for the cubic polynomial

X3 − 3P1X
2 + 2P2X − P 2 = 0.

Notice, (18), (20), (22) admit two first integrals of motion which do not depend of the potential
function V (r):

R1 = −2P2 + 3P 2
1 , R0 = P 3

1 − R1P1 − P 2.

From equations (18), (20), (22) we obtain

1√
k

dP1

dφ
=

√
4P 3

1 − 4R1P1 − 4R0.

The integral of this equation is given by the Weierstrass elliptic integral

√
kφ =

∫
dy√

4y3 − 4R1y − 4R0

.

Consequently, the solution y = P1(
√

kφ; 4R1, 4R0) is expressed via Weierstrass elliptic func-
tion [4].

4 Extended relativistic mechanics
with n-degree characteristic polynomial

The theory we built in the previous sections can be extended to the case of mechanics with
n-degree characteristic polynomial.

Consider the set of n Newtonian equations written with respect to different evolution para-
meters (c = 1):

dp

dtk
= −(�n · �E).

By working in a similar manner as it has been in the previous section we come to the following
equations of motion

dp

ds
= (�n · �E)

q

µ

n−2∏
l=1

pl

µl
,

dq

ds
= (�n · �E)

p

m

n−2∏
l=1

pl

µl
,
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dpk

ds
= (�n · �E)

q

µ

p

m

n−2∏
(l �=k)

pl

µl
, k = 1, 2, . . . , n − 2, (23)

dx

ds
=

p

m

q

µ

n−2∏
l=1

pl

µl
. (24)

Let P be momentum of the particle. Then from (24) it follows

P = p
q

µ

n−2∏
l=1

pl

µl
. (25)

In the sequel we shall use renormalized values

p :=
p√
mµ

, q :=
q

µ
, pl =

pl√
klµl

, l = 1, . . . , n − 2.

Then, in the polar representation (23) will be written as

dp

dφ
= q

n−2∏
l=1

pl,
dq

dφ
= p

n−2∏
l=1

pl,

dpk

dφ
= pq

n−2∏
(l �=k)

pl, k = 1, 2, . . . , n − 2. (26)

dφ

ds
= −k(�n · �E)

1√
mµ

,

where k =
n−2∏
l=1

√
µl.

It is convenient to use the following set of designations p1 := p, p2 := q, pk := pk−2, k =
3, . . . , n. The formula (25) is written now as

P 2 =
n∏

k=1

p2
k. (27)

The other dynamic variable is defined by:

P1 =
1
n

n∑
k=1

p2
k. (28)

The values P 2, P1 are the first members of a mapping which we are seeking. These formulae
are nothing else than the Vieta’s formulae for the polynomial:

Xn +
n∑

k=1

(−1)k(n − k + 1)PkX
n−k = 0, with Pn = P 2. (29)

The roots of this polynomial are given by the set of momenta p2
k (k = 1, . . . , n), whereas the

coefficients of the polynomial will be used in the capacity of dynamic variables of the extended
dynamics.

The evolution equations for the squares of the momenta are given by

dp2
k

ds
= ( �E · �P )

1
m

, k = 1, . . . , n.
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By using the mapping given by formulae (27), (28) and formulae Vieta of the equation (29) from
equations (26) we deduce the following evolution equations for the values P1, P2, . . . , Pn:

dPn−k

ds
= ( �E · �P )Pn−k−1

k + 2
m

, k = 0, . . . , n − 1, with P0 =
1

n + 1
. (30)

These equations admit (n− 1) invariants no containing the potential V (r). These invariants are
given by algebraic expressions of P1, P2, . . . , Pn. It is not easy to construct these expressions,
therefore let us outline the method of construction of these invariants. The method is given by
the following theorem [3]

Theorem 1. The coefficients of the polynomial equation of n-degree

Y n + R1Y
n−2 + · · · + RkY

n−k+1 + · · · + Rn−2Y + R0 = 0,

which is obtained from the polynomial equation (29) by replacing X with X = Y + P1, are
invariants of equations of motion (30).

In this contribution, we did not touch the problem of Extended Lorentz-kinematics. Here,
let us only notice that due to the addition theorem for the elliptic functions still is possible to
formulate a group of transformation. However, for higher order elliptic functions an addition
theorem is not more valid. In this aspect the Extended Relativistic Mechanics with cubic
characteristic polynomial is the last step of possible extensions via elliptic functions.

In the conclusion let us mention about some connection of this contribution with the results
of [5], where hyperelliptic Lax representation for the generalized model of Euler’s top has been
done. In [2] we have shown that the relativistic oscillator model formally coincides with the
model of Euler’s top, whereas the oscillator models of the extended relativistic dynamics (see, for
example, [3]), give generalizations of the Euler’s top model. It is expected that the mathematical
tool developed by Skrypnyk will be helpful within the mechanics elements of which we have
presented in this contribution.
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