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The role of the Killing–Yano tensors in the construction of the Dirac-type operators is
pointed out. The general results are applied to the case of the four-dimensional Euclidean
Taub–Newman–Unti–Tamburino space. Three new Dirac-type operators, equivalent to the
standard Dirac operator, are constructed from the covariantly constant Killing–Yano tensors
of this space. Finally the Runge–Lenz operator for the Dirac equation in this background
is expressed in terms of the fourth Killing–Yano tensor that is not covariantly constant.

1 Introduction

The (skew-symmetric) Killing–Yano (K-Y) tensors that were first introduced by Yano [1] from
purely mathematical reasons, are profoundly connected to the supersymmetric classical and
quantum mechanics on curved manifolds where such tensors do exist [2]. The K-Y tensors play
an important role in theories with spin and especially in the Dirac theory on curved space-
times where they produce first order differential operators, called Dirac-type operators, which
anticommute with the standard Dirac one D [3]. Another virtue of the K-Y tensors is that
they enter as square roots in the structure of several second rank Stäckel–Killing tensors that
generate conserved quantities in classical mechanics or conserved operators which commute
with D. The construction of Carter and McLenaghan depended upon the remarkable fact that
the (symmetric) Stäckel–Killing tensor Kµν involved in the constant of motion quadratic in the
four-momentum pµ

Z =
1
2
Kµνpµpν (1)

has a certain square root in terms of K-Y tensors fµν :

Kµν = fµλf
λ ·
· ν . (2)

The K-Y tensor here is a 2-form fµν = −fνµ which satisfies the equation

fµν;λ + fµλ;ν = 0.

These attributes of the K-Y tensors lead to an efficient mechanism of supersymmetry, espe-
cially when the Stäckel–Killing tensorKµν in equation (1) is proportional to the metric tensor gµν

and the corresponding K-Y tensors in equation (2) are covariantly constant. Then each tensor of
this type f i gives rise to a Dirac-type operator Di representing a supercharge of the superalgebra
{Di, Dj} ∝ D2δij .

The general results are applied to the case of the four-dimensional Euclidean Taub–Newman–
Unti–Tamburino (Taub–NUT) space. The Euclidean Taub-NUT metric is involved in many
modern studies in physics. This metric might give rise to the gravitational analog of the Yang–
Mills instanton [4]. The Kaluza–Klein monopole of Gross and Perry [5] and of Sorkin [6] was
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obtained by embedding the Taub–NUT gravitational instanton into five-dimensional Kaluza–
Klein theory. On the other hand, in the long-distant limit, the relative motion of two monopoles
is approximately described by the geodesics of this space [7].

The Euclidean Taub–NUT space which is a hyper-Kähler manifold possessing three covari-
antly constant K-Y tensors. By means of these covariantly constant Killing–Yano tensors it is
possible to construct new Dirac-type operators [3] which anticommute with the standard Dirac
operator.

We show that the representation of the whole theory can be changed using the U(2) transfor-
mations among them the SU(2) ones are generated just by the spin-like operators constructed
using the above-mentioned three Killing–Yano tensors [8, 9]. On the basis of these results, we
define the parity transformation and a discrete group with eight elements formed by the trans-
formations that relate to each other the four Dirac operators and their parity is transformed
as well. We show that this discrete group is a realization of the quaternion group which is
isomorphic to the dicyclic group of order eight.

The Taub–NUT space also possesses a Killing–Yano tensor which is not covariantly constant.
The corresponding non-standard operator, constructed with the general rule [3] anticommutes
with the standard Dirac operator but is not equivalent to it [10]. This non-standard Dirac
operator is connected to the hidden symmetries of the space allowing construction of a conserved
vector operator analogous to the Runge–Lenz vector of the Kepler problem. We shall discuss the
behavior of this operator under discrete transformations pointing out that the hidden symmetries
are in some sense decoupled from the discrete symmetries studied here [10–15].

2 Dirac equation on a curved background

In what follows we shall consider the Dirac operator on a curved background that has the form

Ds = γµ∇̂µ. (3)

In this expression the Dirac matrices γµ are defined in local coordinates by the anticommutation
relations {γµ, γν} = 2gµνI and ∇̂µ denotes the canonical covariant derivative for spinors.

Carter and McLenaghan showed that in the theory of Dirac fermions for any isometry with
Killing vector Rµ there is an appropriate operator [3]:

Xk = −i
(
Rµ∇̂µ − 1

4
γµγνRµ;ν

)

which commutes with the standard Dirac operator (3).
Moreover, each Killing–Yano tensor fµν produces a non-standard Dirac operator of the form

Df = −iγµ

(
f ν

µ ∇̂ν − 1
6
γνγρfµν;ρ

)

which anticommutes with the standard Dirac operator Ds.

3 Dirac operators of the Taub–NUT space

Let us consider the Taub–NUT space and the chart with Cartesian coordinates xµ (µ, ν, . . . =
1, 2, 3, 4) having the line element

ds2 = gµνdx
µdxν =

1
V
dl2 + V (dx4 +Aidx

i)2,
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where dl2 = (d�x)2 = (dx1)2+(dx2)2+(dx3)2 is the Euclidean three-dimensional line element and
�A is the gauge field of a monopole. Another chart suitable for applications is that of spherical
coordinates (r, θ, φ, χ) among them the first three are the spherical coordinates commonly
associated with the Cartesian space ones xi (i, j, . . . = 1, 2, 3), while χ + φ = −x4/µ. The real
number µ is the parameter of the theory which enters in the form of the function 1/V (r) =
1 + µ/r. The only non-vanishing component of the vector potential in spherical coordinates is
Aφ = µ(1− cos θ). This space has the isometry group Gs = SO(3)⊗U(1)4 formed by rotations
of the Cartesian space coordinates and x4 translations. The U(1)4 symmetry is important since
that eliminates so called NUT singularity if x4 has the period 4πµ.

For the theory of the Dirac operators in Cartesian charts of the Taub–NUT space, it is
convenient to consider the local frames given by tetrad fields e(x) and ê(x) as defined in [16]
while the four Dirac matrices γα̂ that satisfy {γα̂, γβ̂} = 2δα̂β̂ have to be written in the following
representation

γi = −i
(

0 σi

−σi 0

)
, γ4 =

(
0 12

12 0

)
, (4)

where all of them are self-adjoint. In addition we consider the matrix

γ5 = γ1γ2γ3γ4 =
(

12 0
0 −12

)

which is denoted by γ0 in Kaluza–Klein theory explicitly involving the time [12].
The standard Dirac operator of the theory without explicit mass term is defined asDs = γα̂∇̂α̂

[12, 10] where the spin covariant derivatives with local indices ∇̂α̂ depend on the momentum
operators, Pi = −i(∂i−Ai∂4) and P4 = −i∂4, and spin connection [12], such that the Hamiltonian
operator [12, 13]

H = γ5Ds =
(

0 α∗

α 0

)

can be expressed in terms of Pauli operators,

α =
√
V

(
�σ · �P − iP4

V

)
, α∗ = V

(
�σ · �P +

iP4

V

)
1√
V
,

involving the Pauli matrices σi. These operators give the (scalar) Klein–Gordon operator of the
Taub–NUT space [12, 13], ∆ = −∇µg

µν∇ν = α∗α. We specify that here the star superscript
is a mere notation that does not represent the Hermitian conjugation, because we are using
a non-unitary representation of the algebra of Dirac operators. Of course, this is equivalent to
the unitary representation where all of these operators are self-adjoint [12].

The first three Killing–Yano tensors of the Taub–NUT space [17],

f i = f i
α̂β̂
êα̂ ∧ êβ̂ = 2ê4 ∧ êi + εijkê

j ∧ êk

are rather special since they are covariantly constant. f i define three anticommuting complex
structures of the Taub–NUT manifold, their components realizing the quaternion algebra

f if j + f jf i = −2δij , f if j − f jf i = −2εijkfk.

Existence of these Killing–Yano tensors is linked to the hyper-Kähler geometry of the manifold
and shows directly the relation between the geometry and the N = 4 supersymmetric extension
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of the theory [2, 18]. Moreover, we can give a physical interpretation of these Killing–Yano
tensors defining the spin-like operators,

Σi = − i

4
f i

α̂β̂
γα̂γβ̂ =

(
σi 0
0 0

)
, (5)

that have similar properties to those of the Pauli matrices. In the pseudo-classical description of
a Dirac particle [2,18] the covariantly constant Killing–Yano tensors correspond to components
of the spin which are separately conserved.

Here, since the Pauli matrices commute with the Klein–Gordon operator, the spin-like ope-
rators (5) commute with H2. Remarkable existence of the Killing–Yano tensors allows one to
construct Dirac-type operators [3]

Qi = −if i
α̂β̂
γα̂∇̂β̂ = {H, Σi} =

(
0 σiα

∗

ασi 0

)
(6)

that anticommute with Ds and γ5 and commute with H [10]. Another Dirac operator can be
defined using the fourth Killing–Yano tensor but this will be discussed separately in Section 6.

4 Equivalent representations

In [12] we have shown that in the massless case the operators Qi (i = 1, 2, 3) and the new super-
charge Q0 = iDs = iγ5H form the basis of a N = 4 superalgebra obeying the anticommutation
relations

{QA, QB} = 2δABH
2, A,B, . . . = 0, 1, 2, 3 (7)

linked to the hyper-Kähler geometric structure of the Taub–NUT space. In addition, we associate
to each Dirac operator QA its own Hamiltonian operator Q̃A = −iγ5QA obtaining thus another
set of supercharges,

Q̃0 = H, Q̃i = i[H,Σi] (8)

that obey the same anticommutation relations as (7). Thus we find that there are two similar
superalgebras of operators with precise physical meaning. Obviously, since all of these operators
must be self-adjoint we have to work only with unitary representations of these superalgebras,
up to an equivalence.

The concrete form of these supercharges depends on the representation of the Dirac matrices
which can be changed at any time with the help of a non-singular operator T such that all of
the 4 × 4 matrix operators of the Dirac theory transform as X → X ′ = TXT−1. In this way
one obtains an equivalent representation which preserves the commutation and the anticommu-
tation relations. In [12] we have used such transformations for pointing out that the convenient
representations where we work are equivalent to unitary one. We note that some properties
of the transformations changing representations in theories with two Dirac operators and their
possible new applications are discussed in [19].

For example, simple and convenient transformations of the form can be chosen:

U(β, �ξ) =
(
Û(β, �ξ) 0

0 12

)
,

where Û(β, �ξ) = e−iβÛ(�ξ) ∈ U(2) = U(1) ⊗ SU(2) with Û(�ξ) ∈ SU(2). This is because among
these transformations one could find those linking equivalent Dirac operators.
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It is interesting to observe that the SU(2) transformations are generated just by the above
defined spin-like operators as

U(�ξ) = U(0, �ξ) = e−i�ξ·�Σ/2 =
(
Û(�ξ) 0

0 12

)
. (9)

If we take now �ξ = 2ϕ�n with |�n| = 1 and ϕ ∈ [0, π], we find that

Û(�ξ) = e−i�ξ·�σ/2 = 12 cosϕ− i�n · �σ sinϕ

and after a little calculation we can write the concrete action of (9) as

Q′
0 = U(�ξ)Q0U

+(�ξ) = Q0 cosϕ+ niQi sinϕ, (10)

Q′
i = U(�ξ)QiU

+(�ξ) = Qi cosϕ− (niQ0 + εijknjQk) sinϕ. (11)

Hereby we see that the supercharges are mixed among themselves in linear combinations
involving only real coefficients. In addition, we observe that these transformations correspond
to an irreducible representation since the supercharges transform like the real components of
a Pauli spinor. In other words, the usual SU(2) transformations ψQ → ψ′

Q = Û+(�ξ)ψQ of the
spinor-operator

ψQ =
(
Q0 − iQ3

Q2 − iQ1

)

give just the transformations (10) and (11).

5 Discrete transformations

Let us focus now only on the transformations which transform the supercharges QA among
themselves without affecting their form. From (10) and (11) we see that there exist particular
transformations,

Qk = UkQ0U
+
k , k = 1, 2, 3,

where the matrix Uk = diag(−iσk,12) is given by −iσk ∈ SU(2). In addition, we consider the
parity operator P = P−1 = −γ5 that changes the sign of supercharges,

PQAP = −QA, A = 0, 1, 2, 3. (12)

Then it is not hard to verify that the identity I = 14, P and the sets of matrices Uk and PUk

(k = 1, 2, 3) form a discrete group of order eight, the multiplication table of which is determined
by the following rules

P 2 = I, PUk = UkP,

U1
2 = U2

2 = U3
2 = P, (13)

U1U2 = U3, U2U1 = PU3, . . . etc.

We denote this group by GQ since it is a realization of the quaternion group Q which is
isomorphic with the dicyclic group 〈2, 2, 2〉 [20, 21]. In the representation (4) of the γ-matrices,
its operators are defined by proper unitary matrices (which satisfy G−1 = G+ and detG = 1,
∀G ∈ GQ) constructed using the elements ±12,±iσ1,±iσ2,±iσ3 of the natural realization of Q
as a discrete subgroup of SU(2).



606 M. Visinescu

The group GQ is interesting because it brings together the parity that produces the transfor-
mations (12) and the operators Uk giving sequences of the form

Q1 = U+
3 Q2U3 = U2Q3U

+
2 = U1Q0U

+
1 , . . . etc.

that leads to the conclusion that the Dirac operators and their parity transformed ±QA (A =
0, 1, 2, 3), are equivalent among themselves. All these operators constitute the orbit ΩQ =
{Q |Q = GQ0G

+, ∀G ∈ GQ} of the group GQ in the algebra of the 4 × 4 matrix operators.
A similar orbit Ω̃Q can be constructed for the associated Hamiltonian operators ±Q̃A defined
by (8), if we start with Q̃0 instead of Q0. It is remarkable that each of these two orbits includes
only operators representing (up to sign) supercharges obeying superalgebras of the form (7).

In the Kaluza–Klein theory with the time trivially added [12], the time dependent term of the
whole massless Dirac operator commutes with all the operators of GQ so as it remains unchanged
when one replaces the space parts using the discrete transformations of this group. In these
conditions all the Dirac operators of ΩQ lead to equivalent Dirac equations from the physical
point of view. These can be written in Hamiltonian form as i∂tψ

(±)
A = ±Q̃Aψ

(±)
A (A = 0, 1, 2, 3)

and produce the same energy spectrum which coincides with that of the Klein–Gordon equation
as it results from the superalgebra (7) [22, 12].

The existence of this discrete symmetry among the four supercharges of the superalgebra
of the Dirac and Dirac-type operators (or the corresponding Hamiltonian operators) must be
understood as a consequence of the fact that the Taub-NUT space has a hyper-Kähler structure
modeled on a quaternion inner-product space [23]. In other words, the Dirac theory in this
space picks up the basic quaternion character of the tangent space showing it off as the discrete
symmetry due to the group GQ ∼ Q, naturally related to the specific supersymmetries of this
geometry.

6 Hidden symmetries and the fifth Dirac operator

In the Taub–NUT space, in addition to the above discussed covariantly constant Killing–Yano
tensors, there exists a fourth Killing–Yano tensor,

fY = −x
i

r
f i +

2xi

µV
εijkê

j ∧ êk,

which is not covariantly constant. The presence of fY is due to existence of the hidden sym-
metries of the Taub–NUT geometry that are encapsulated in three non-trivial Stäckel–Killing
tensors. These are interpreted as the components of the so-called Runge–Lenz vector of the
Taub–NUT problem and are expressed as symmetrized products of the Killing–Yano tensors fY

and f i (i = 1, 2, 3) [24].
As in the case of the Dirac operators (6), one can use fY for defining the fifth Dirac operator

QY
0 = −iγα̂

(
fY

α̂β̂
∇̂β̂ − 1

6
γβ̂γ δ̂fY

α̂β̂;δ̂

)
,

called here the non-standard or hidden Dirac operator to emphasize the connection with the
hidden symmetry of the Taub–NUT problem. It is denoted by QY

0 instead of QY as in [10] to
point out its relation to the standard Dirac operator since it can be put in the form

QY
0 = i

r

µ

[
Q0,

(
σr 0
0 σrV

−1

)]
,

where σr = �x ·�σ/r. We showed that QY
0 commutes with Q̃0 = H and anticommutes with Q0 and

γ5 [10]. This operator is important because it allowed us to derive the explicit form of the Runge–
Lenz operator �K of the Dirac field in Taub–NUT background establishing its properties [10].
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We recall that the components of the conserved total angular momentum �J , and the operators
Ri = F−1Ki with F 2 = P4

2 −H2 are just the generators of the dynamical algebra of the Dirac
theory in Taub–NUT background [13,14].

Starting with QY
0 we can construct a new orbit ΩY of GQ defining

QY
k = UkQ

Y
0 U

+
k = i

r

µ

[
Qk,

(
σkσrσk 0

0 σrV
−1

)]
(14)

(for k = 1, 2, 3) and observing that PQY
AP = −QY

A , A = 0, 1, 2, 3.
From the explicit form (14) we deduce that, in contrast with the operators of the orbits ΩQ

and Ω̃Q, those of the orbit ΩY have more involved algebraic properties. We can show that
calculating

H2(QY
0 )2 = H4 +

4
µ2
H2

(
�J 2 +

1
4

)
+ 4F 2P 2

4 , (15)

and it is worth comparing it with equation (7). The Dirac-type operators QA are characterized
by the fact that their quantal anticommutator closes on the square of the Hamiltonian of the
theory. No such expectation applies to the non-standard, hidden Dirac operators QY

A which
close on a combination of different conserved operators. Also from equation (15) it results
that (QY

A)2 �= (QY
B)2 if A �= B (because �J 2 does not commute with Uk). Moreover, one can

show that the commutators [QY
A , Q

Y
B] have complicated forms that can not be expressed in

terms of operators QY
A . Therefore, neither the commutator nor the anticommutator of the pairs

of operators of this orbit do not lead to significant algebraic results as the anticommutation
relations (7) of the operators QA (A = 0, 1, 2, 3).

7 Concluding remarks

In the study of the Dirac equation in curved spaces, it has been proved that the Killing–Yano
tensors play an essential role in the construction of new Dirac-type operators. The Dirac-type
operators constructed with the aid of covariantly constant Killing–Yano tensors are equivalent
with the standard Dirac operator. The non-covariantly constant Killing–Yano tensors generate
non-standard Dirac operators that are not equivalent to the standard Dirac operator and they
are associated with the hidden symmetries of the space.

The Taub–NUT space has a special geometry where the covariantly constant Killing–Yano
tensors exist by virtue of the metric being self-dual and the Dirac-type operators generated
by them are equivalent to the standard one. The fourth Killing–Yano tensor fY that is not
covariantly constant exists by virtue of the metric being of type D. The corresponding non-
standard or hidden Dirac operator does not close on H as it can be seen from equation (15)
and is not equivalent to the Dirac-type operators. As it was mentioned, it is associated with
the hidden symmetries of the space allowing the construction of the conserved vector-operator
analogous to the Runge–Lenz vector of the Kepler problem.

Let us mention that in the pseudo-classical spinning particle models in curved spaces from
covariantly constant K-Y tensors fµν conserved quantities of the type fµνθ

µθν depending on the
Grassmann variables {θµ} can be constructed [24]. The Grassmann variables {θµ} transform
as a tangent space vector and describe the spin of the particle. The antisymmetric tensor
Sµν = −iθµθν generates the internal part of the local tangent space rotations. For example, in
the spinning Euclidean Taub–NUT space such operators correspond to components of the spin
that are separately conserved [18].

The construction of the new supersymmetries in the context of pseudo-classical mechanics
can be carried over straightforwardly to the case of quantum mechanics by the usual replacement
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of phase space coordinates by operators and Poisson–Dirac brackets by anticommutators [25].
In terms of these operators the supercharges are replaced by Dirac-type operators [26]. In both
cases, the correspondence principle leads to equivalent algebraic structures making obvious the
relations between these approaches [18].
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[10] Cotăescu I.I. and Visinescu M., Runge–Lenz operator for Dirac field in Taub–NUT background, Phys.
Lett. B, 2001, V.502, 229–234.
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[22] Comtet A. and Horváthy P.A., The Dirac equation in Taub–NUT space, Phys. Lett. B, 1995, V.349, 49–56.

[23] Hitchin N., Monopoles, minimal surfaces and algebraic curves (Séminaire de Mathématiques Supérieures,
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