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The Hamiltonian and covariant generators of κ-symmetry and extra bosonic gauge symme-
tries of superstring and super p-branes preserving 3/4 of the D = 4 N = 1 supersymmetry
are presented.

1 Introduction

As shown in [1] exotic BPS states preserving M−1
M fraction of N = 1 supersymmetry can be

realized by static configurations of free tensionless super p-branes (p = 1, 2, . . .) with the ac-
tion linear in derivatives1. These static configurations were described by general solutions of
the equations of motion of super p-branes evolving in superspace extended by tensor central
charge (TCC) coordinates. Because of the OSp(1|2M) global symmetry of the model, its static
p-brane solution was formulated in terms of supertwistor previously used to formulate superpar-
ticle models [3–5] and forming a subspace of the Sp(2M) invariant symplectic space [6, 7]. As
a result, the static form of the discussed supertwistor representation of the BPS brane solution
is not static in terms of the original superspace-time and TCC coordinates. It is static only
modulo transformations of enhanced κ-symmetry and its accompanying local symmetries, since
the supertwistor components are invariant under these gauge symmetries, as shown in [8]. In
the bosonic sector the unphysical p-brane motions related to the gauge symmetries were geomet-
rically realized as the Abelian shifts [8] of the space-time and TCC coordinates by the Lorentz
bivectors (generally multivectors) generalizing vector light-like Penrose shifts of the standard
space-time coordinates [9]. Being inessential on the classical level of consideration, these shifts
may turn out to be essential in the quantum dynamics of strings and branes. This necessitates
quantum treatment of the model [1] in the original variables that belong to the superspace ex-
tended by TCC coordinates and auxiliary spinor fields. Interest to this problem is stimulated
by a conjectured relation of the tensionless strings with higher spin theories and free confor-
mal SYM theories [10, 11, 7], as well as by the presence of higher spin states in the quantized
OSp(1|2M) invariant model of superparticle [12].

In this talk we start study of the formulated problem on the example of D = 4 N = 1 super
p-brane model [1] and consider its Hamiltonian description, based on the covariant approach to
the first- and second-class constraints division [13, 14], correlating with the description [15] in
the fixed light-cone gauge. The covariant first-class constraints which are generators of the local
symmetries of the model, as well as, its Hamiltonian are presented. Further development of the
results towards the exploration of quantum dynamics and symmetries of the string/brane model
is discussed.

1New Wess–Zumino like super p-brane models nonlinear in derivatives and preserving M−1
M

fraction of super-
symmetry were recently proposed in [2].
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2 Lagrangians for strings and branes
with enhanced supersymmetry and symplectic twistor

A new simple model [1] describes tensionless strings and p-branes spreading in the symplectic
superspace Msusy

M . For M = 2[D
2

] (D = 2, 3, 4 mod 8) this superspace naturally associates with
D-dimensional Minkowski space-time extended by the Majorana spinor θa (a = 1, 2, . . . , 2[D

2
])

and the tensor central charge coordinates zab additively unified with the standard space-time
coordinates xab = xm(γmC−1)ab in the symmetric spin-tensor Yab. The supersymmetric and
reparametrization invariant action of the model [1]

Sp =
1
2

∫
dτdpσ ρµUaWµabU

b (1)

includes the world-volume pullback

Wµab = ∂µYab − 2i(∂µθaθb + ∂µθbθa),

of the supersymmetric Cartan differential one-form Wab = Wµabdξµ, where ∂µ ≡ ∂
∂ξµ and

ξµ = (τ, σM ) ≡ (τ, 	σ), (M = 1, 2, . . . , p) are world-volume coordinates. The local auxiliary
Majorana spinor Ua(τ, σM ) parametrizes the generalized momentum P ab = ρτUaU b of the ten-
sionless p-brane and ρµ(τ, σM ) is the world-volume vector density providing the reparametriza-
tion invariance of Sp. This action has (M − 1) κ-symmetries and consequently preserves M−1

M
fraction of the original global supersymmetry.

By the generalized Penrose transformation of variables

YabU
b = iỸa + η̃θa, η̃ = −2i(Uaθa), (2)

where η̃ is real Goldstone fermion associated with the spontaneous breakdown of 1
M supersym-

metry, the differential one-form UaWabU
b is presented as

UaWabU
b = i{UadỸa − dUaỸa + dη̃η̃} ≡ dY ΛGΛΣY Σ. (3)

The new object Y Λ = (iUa, Ỹa, η̃) in (2), (3) is OSp(1|2M) supertwistor and GΛΣ = (−)ΛΣ+1GΣΛ

is OSp(1|2M) invariant supersymplectic metric

GΛΣ =
(

ω(2M) 0
0 i

)
=


 0 −δa

b 0
δa

b 0 0
0 0 i


 ,

which is the supersymmetric generalization of Sp(2M) symplectic metric ω(2M). In view of (2)
and (3), the action Sp (1) is presented in the supertwistor form

Sp =
1
2

∫
dτdpσ ρµ∂µY ΛGΛΣY Σ (4)

that is apparently invariant under global OSp(1|2M) symmetry. For the particular case of
D = 11 the action (4) is invariant under OSp(1|64) generalized superconformal symmetry [16].

The original action (1) is invariant under (M − 1) κ-symmetries since the transformation
parameter κa(τ, 	σ) is restricted by only one real condition

Uaκa = 0, (5)

as it follows from the transformation rules of the primary variables

δκθa = κa, δκYab = −2i(θaκb + θbκa), δκUa = 0. (6)
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It is easy to show [8] that all components of the supertwistor Y Λ = (iUa, Ỹa, η̃) are invariant
under κ-symmetry transformations (5), (6)

δκỸa = 0, δκη̃ = 0, δκUa = 0,

so that new representation of Sp (4) includes only κ-invariant variables. Note that in 4-di-
mensional space-time Y Λ contains only 9 real variables that is twice less than the number of the
original variables Yab, θa, Ua.

3 Example of OSp(1|8) string/brane. Primary constraints

OSp(1|8) is the global supersymmetry of the massless fields of all spins in D = 4 space-time
extended by TCC coordinates [6, 7]. Therefore, we study D = 4 example of the string/brane
model (1) formulated in generalized (4 + 6)-dimensional space M4+6 extended by the Grass-
mannian Majorana bispinor θa. In this case the D = 4 N = 1 superalgebra

{Qa, Qb} =
(
γmC−1

)
ab

Pm + i
(
γmnC−1

)
ab

Zmn

includes the TCC 2−form generator Zmn, and the matrix coordinates Yab are

Yab = xab + zab,

where

xab = xm

(
γmC−1

)
ab

, zab = zmn

(
γmnC−1

)
ab

with the charge conjugation matrix C chosen to be imaginary in the Majorana representation.
Here we use the same agreements about the spinor algebra as in [1]. In the Weyl basis real
symmetric 4 × 4 matrix Yab is presented as

Ya
b = YadC

db =

(
zα

β xαβ̇

x̃α̇β z̄α̇
β̇

)
, Cab =

(
εαβ 0
0 εα̇β̇

)
.

In the D = 4 case the auxiliary Majorana spinor Ua(τ, σM ) complemented by another auxiliary
Majorana spinor V a(τ, σM ) forms a spinor basis together with the spinors (γ5U)a and (γ5V )a

Ua =
(

uα

ūα̇

)
, Va =

(
vα

v̄α̇

)
, (Uγ5V ) = −2i, (UV ) = 0,

where the γ5-matrix is

γ5 =

(
−iδβ

α 0
0 iδα̇

β̇

)
.

Respectively the linear independent Weyl spinors uα and vα attached to the string/brane world
volume may be identified with the local Newman–Penrose dyad [9]

uαvα ≡ uαεαβvβ = 1, uαuα = vαvα = 0.

In the Weyl basis the action (1) acquires the form

Sp =
1
2

∫
dτdpσ ρµ

(
2uαωµαα̇ūα̇ + uαωµαβuβ + ūα̇ω̄µα̇β̇ūβ̇

)
, (7)
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where the supersymmetric one-forms ωµαα̇ and ωµαβ are

ωµαα̇ = ∂µxαα̇ + 2i(∂µθαθ̄α̇ + ∂µθ̄α̇θα),
ωµαβ = −∂µzαβ − 2i(∂µθαθβ + ∂µθβθα),
ω̄µα̇β̇ = −∂µz̄α̇β̇ − 2i(∂µθ̄α̇θ̄β̇ + ∂µθ̄β̇ θ̄α̇).

The momenta densities PM
(
τ, σM

)

PM =
∂L

∂Q̇M

=
(
P α̇α, παβ , π̄α̇β̇ , πα, π̄α̇, Pα

u , P̄ α̇
u , Pα

v , P̄ α̇
v , P (ρ)

µ

)

are canonically conjugate to the coordinates

QM = (xαα̇, zαβ, z̄α̇β̇ , uα, ūα̇, vα, v̄α̇, ρµ)

with respect to the Poisson brackets

{PM(	σ), QN(	σ′)}P.B. = δM
N δp(	σ − 	σ′)

with the periodic δ-function δp(	σ−	σ′), where 	σ = (σ1, . . . , σp), for the case of closed string/brane
studied here.

As far as Sp (7) is linear in the proper time derivatives, it is characterized by the presence of
the primary constraints. These constraints may be divided into four sectors.

The bosonic Φ-sector includes the constraints Φ ≡ (Φα̇α, Φαβ , Φ̄α̇β̇
)

with

Φα̇α = P α̇α − ρτuαūα̇ ≈ 0,

Φαβ = παβ +
1
2
ρτuαuβ ≈ 0, (8)

Φ̄α̇β̇ = π̄α̇β̇ +
1
2
ρτ ūα̇ūβ̇ ≈ 0.

The constraints from the Grassmannian Ψ-sector, where Ψ = (Ψα, Ψ̄α̇), are given by

Ψα = πα − 2iθ̄α̇P α̇α − 4iπαβθβ ≈ 0,

Ψ̄α̇ = −(Ψα)∗ = π̄α̇ − 2iP α̇αθα − 4iπ̄α̇β̇ θ̄β̇ ≈ 0. (9)

The dyad or (u, v)-sector is formed by the constraints

Pα
u ≈ 0, P̄ α̇

u ≈ 0, Pα
v ≈ 0, P̄ α̇

v ≈ 0,

Ξ ≡ uαvα − 1 ≈ 0, Ξ̄ ≡ ūα̇v̄α̇ − 1 ≈ 0. (10)

Finally, the ρ−sector includes the constraints

P (ρ)
µ ≈ 0, µ = (τ, M), M = (1, . . . , p). (11)

To find all local symmetries of the brane action, it is necessary to split the constraints (8)–(11)
into the first- and the second-class sets. Then the first-class constraints will generate the local
symmetries on the Poisson brackets in accordance with the Dirac prescription.
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4 The first-class constraints

To begin with consider the first-class constraints from the Ψ-sector (9) that generate κ-symmetry
transformations (6). To find their explicit form it is necessary to solve equation (5) restricting
the transformation parameter κa(τ, 	σ). Taking into account its decomposition over the dyad
basis

κα = κuα + κ̃vα, κ̄α̇ = κ̄ūα̇ + ¯̃κv̄α̇

it follows from equation (5) that κ̃ = ¯̃κ thus κ̃ = κ̃R is real. Then the 3-parametric κ-symmetry
transformation laws acquire the form

δκθα = κuα, δκθ̄α̇ = κ̄ūα̇,

δκxαα̇ = −2i(κuαθ̄α̇ + κ̄ūα̇θα), δκzαβ = −2iκ(uαθβ + uβθα);
δκ̃Rθα = κ̃Rvα, δκ̃R θ̄α̇ = κ̃Rv̄α̇, (12)
δκ̃Rxαα̇ = −2iκ̃R(vαθ̄α̇ + v̄α̇θα), δκ̃Rzαβ = −2iκ̃R(vαθβ + vβθα).

Transformations (12) are generated on the Poisson brackets by three constraints

Ψ(u) ≡ Ψαuα ≈ 0, Ψ̄(u) ≡ Ψ̄α̇ūα̇ ≈ 0, Ψ(v)
R ≡ Ψαvα + Ψ̄α̇v̄α̇ ≈ 0

that belong to the first-class. The Poisson brackets of these κ-symmetry generators

{Ψ(u)(	σ), Ψ̄(u)(	σ′)}P.B. = −4iΦ(u)δp(	σ − 	σ′) ≈ 0,

{Ψ(u)(	σ), Ψ(u)(	σ′)}P.B. = −8iT (u)δp(	σ − 	σ′) ≈ 0,

{Ψ̄(u)(	σ), Ψ̄(u)(	σ′)}P.B. = −8iT̄ (u)δp(	σ − 	σ′) ≈ 0,

{Ψ(v)
R (	σ), Ψ(v)

R (	σ′)}P.B. = −8iT̃
(v)
R δp(	σ − 	σ′) ≈ 0,

{Ψ(v)
R (	σ), Ψ(u)(	σ′)}P.B. = −2i(T̃ (+) − iT̃ (−))δp(	σ − 	σ′) ≈ 0,

{Ψ(v)
R (	σ), Ψ̄(u)(	σ′)}P.B. = −2i(T̃ (+) + iT̃ (−))δp(	σ − 	σ′) ≈ 0

are closed by 6 bosonic first-class constraints from the Φ-sector that were chosen as follows

T (u) ≡ uαΦαβuβ ≈ 0, T̄ (u) = (T (u))∗, (13)

Φ(u) ≡ uαΦαβ̇ūβ̇ , (14)

T̃
(v)
R ≡ vαΦαβvβ + v̄α̇Φ̄α̇β̇ v̄β̇ + v̄α̇Φα̇αvα ≈ 0, (15)

T̃ (+) ≡ Φα̇α(uαv̄α̇ + vαūα̇) + 2
(
Φαβu{αvβ} + Φ̄α̇β̇ū{α̇v̄β̇}

)
≈ 0, (16)

T̃ (−) ≡ i
[
Φα̇α(uαv̄α̇ − vαūα̇) + 2

(
Φαβu{αvβ} − Φ̄α̇β̇ū{α̇v̄β̇}

)]
≈ 0. (17)

The meaning of the constraints (13)–(17) is that they generate local shifts of space-time and
TCC coordinates along the directions defined by the moving tetrade attached to super p-brane
world volume [8]. Indeed, constraints (13) correspond to local shifts of TCC coordinates along
the conjugate momentum

δT (u)zαβ = εT (u)uαuβ ≈ −2
εT (u)

ρτ
παβ , δT̄ (u) z̄α̇β̇ = ε̄T̄ (u) ūα̇ūβ̇ ≈ −2

ε̄T̄ (u)

ρτ
π̄α̇β̇ ,

whereas the constraint (14) generates analogous shift for ordinary space-time coordinates

δΦ(u)xαα̇ = εΦ(u)uαūα̇ ≈ εΦ(u)

ρτ
Pαα̇.
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The local symmetry generated by the constraint (15) is the shift of space-time and TCC coor-
dinates along another light-like direction parametrized by the dyad component vα

δ
T̃

(v)
R

xαα̇ = ε
T̃

(v)
R

vαv̄α̇, δ
T̃

(v)
R

zαβ = ε
T̃

(v)
R

vαvβ, δ
T̃

(v)
R

z̄α̇β̇ = ε
T̃

(v)
R

v̄α̇v̄β̇.

The action (7) is invariant under this transformation due to mutual cancellation of contributions
to the variation coming from space-time and TCC coordinates. Finally constraints (16), (17)
correspond to local shifts of space-time coordinates along the directions transverse to the world
volume

δT̃ (+)xαα̇ = εT̃ (+)m
(+)
αα̇ , δT̃ (−)xαα̇ = εT̃ (−)m

(−)
αα̇

compensated by appropriate shifts of TCC coordinates

δT̃ (+)zαβ = 2εT̃ (+)u{αvβ}, δT̃ (+) z̄α̇β̇ = 2εT̃ (+) ū{α̇v̄β̇};

δT̃ (−)zαβ = 2iεT̃ (−)u{αvβ}, δT̃ (−) z̄α̇β̇ = −2iεT̃ (−) ū{α̇v̄β̇},

where u{αvβ} = 1
2(uαvβ + uβvα).

In the dyad sector there present are two first-class constraints

P (u)
v ≡ Pα

v uα ≈ 0, P̄ (u)
v ≡ P̄ α̇

v ūα̇ ≈ 0

generating shifts of vα (v̄α̇) dyad components along uα (ūα̇). These shifts constitute apparent
local symmetry of the action (7) as Sp does not contain vα (v̄α̇).

The first-class constraints of the ρ-sector are

P
(ρ)
M ≈ 0, M = (1, . . . , p).

They commute with all other constraints since canonically conjugate variables ρM do not en-
ter the primary constraints (8)–(11). P

(ρ)
M constraints correspond to redefinition of p space

components ρM of the (p + 1)-dimensional world-volume vector density ρµ(τ, 	σ)

δερ
M = εM (τ, 	σ). (18)

The transformations (18) are new local symmetries of the action Sp due to arbitrariness in the
definition of ρM .

The first-class constraint that includes primary ones from the different sectors is provided by
the Weyl symmetry generator

∆W ≡ (Pα
u uα + P̄ α̇

u ūα̇) − (Pα
v vα + P̄ α̇

v v̄α̇) − 2ρµP (ρ)
µ ≈ 0.

The local transformation generated by ∆W is the dilation that acts only on auxiliary variables
uα, vα and ρµ

ρ′µ = e−2Λρµ, u′
α = eΛuα, v′α = e−Λvα,

x′
αα̇ = xαα̇, z′αβ = zαβ , θ′α = θα. (19)

The transformation (19) is identified with the Weyl symmetry of the p-brane action. From
the string point of view, the Weyl invariants ρµuαūα̇ and ρµuαuβ constructed from auxiliary
world-volume fields are similar to conventional Weyl invariant of tensile string

√−ggµν ⇔ ρµuαūα̇,

but here (19) is the symmetry the tensionless super p-brane action.
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Finally the set of the first-class constraints comprises p space-like reparametrization genera-
tors

LM = P α̇αωMαα̇ − παβωMαβ − π̄α̇β̇ω̄Mα̇β̇ + ∂MθαΨα + ∂M θ̄α̇Ψ̄α̇

+ (Pα
u ∂Muα + Pα

v ∂Mvα) + (P̄ α̇
u ∂M ūα̇ + P̄ α̇

v ∂M v̄α̇) − ∂MP (ρ)
ν ρν ≈ 0

that are the secondary constraints. The remaining time-like τ -reparametrization constraint is
not independent and is constructed from the constraints T (u) (13), Φ(u) (14) for zαβ, xαα̇ and
some algebraic combinations of the other first-class constraints for the remaining generalized
coordinates.

5 The Hamiltonian

Having completed the construction of the first-class constraints we present the total gauge
independent Hamiltonian density of the super p-brane in the form of their linear combination

HT (τ, 	σ) = κuΨ(u) + κ̄uΨ̄(u) + κRΨ(v)
R + auΦ(u) + buT (u) + b̄uT̄ (u) + c(+)T̃ (+) + c(−)T̃ (−)

+ c
(v)
R T̃

(v)
R + eP (u)

v + ēP̄ (u)
v + ω∆W + fMP

(ρ)
M + ρ̃MLM ≈ 0,

where the functions κ, a, b, c, e, f , ω and ρ̃ form the set of (9 + 2p)B + 3F real Lagrange
multipliers. The above Hamiltonian density yields the covariant equations of motion.

6 Conclusion

The Hamiltonian of the simplest D = 4 N = 1 super p-brane model of which general solu-
tion describes the BPS state with exotic 3/4 fraction of supersymmetry was constructed. To
separate the first-class constraints in the manifestly Lorentz covariant way there has been intro-
duced additional Weyl spinor field vα(τ, 	σ) forming the local Newman–Penrose dyad [9] together
with uα(τ, 	σ). It was shown that the model possesses 3 fermionic first-class constraints that are
generators of enhanced κ-symmetry transformations and 2p+9 bosonic first-class constraints cor-
responding to space-like reparametrizations (p constraints), redefinitions of p space components
of the auxiliary world-volume vector density ρµ = (ρτ , ρM ), shifts of the dyad components vα

along uα (2 constraints), local Weyl symmetry (1 constraint) and 6 Abelian shifts of the space-
time and TCC coordinates along the directions specified by the bilinear combinations of the
dyad components. The first-class constraints fix the number of physical degrees of freedom of
the p-brane model to be nphys = 2(4 − p)B + 1F (0 ≤ p ≤ 4) and encode them by the OSp(1|8)
supertwistor, which is invariant under 8B + 3F gauge symmetries, as was proved in [8]. So,
in the supertwistor representation 8B + 3F redundant superspace-time degrees of freedom are
covariantly excluded just by the variables transformation without any gauge fixing.

The results obtained here constitute a reliable basis for the covariant separation of the second-
class constraints, construction of the Dirac brackets and performing the canonical quantization
of super p-brane model [1]. These results are presented in the recent papers [19].
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