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We show that the diagonal matrix elements of the exact effective Hamiltonian governing
the time evolution in the subspace of states of an unstable particle and its antiparticle need
not be equal at for t > t0 (t0 is the instant of creation of the pair) when the total system
under consideration is CPT invariant but CP noninvariant. The unusual consequence of
this result is that, contrary to the properties of stable particles, the masses of the unstable
particle “1” and its antiparticle “2” need not be equal for t � t0 in the case of preserved
CPT and violated CP symmetries.

1 Introduction

The problem of testing CPT-invariance experimentally has attracted the attention of physicist,
practically since the discovery of antiparticles. CPT symmetry is a fundamental theorem of
axiomatic quantum field theory which follows from locality, Lorentz invariance, and unitarity [2].
Many tests of CPT-invariance consist in searching for decay process of neutral kaons. All known
CP- and hypothetically possible CPT-violation effects in neutral kaon complex are described by
solving the Schrödinger-like evolution equation [3–7] (we use � = c = 1 units)

i
∂

∂t
|ψ; t〉‖ = H‖|ψ; t〉‖ (1)

for |ψ; t〉‖ belonging to the subspace H‖ ⊂ H (where H is the state space of the physical
system under investigation), e.g., spanned by orthonormal neutral kaons states |K0〉, |K0〉, and
so on, (then states corresponding with the decay products belong to H � H‖

def= H⊥), and
non-Hermitian effective Hamiltonian H‖ obtained usually by means of Lee–Oehme–Yang (LOY)
approach (within the Weisskopf–Wigner approximation (WW)) [3–5,7]:

H‖ ≡M − i

2
Γ, (2)

where M = M+, Γ = Γ+, are (2 × 2) matrices.
Solutions of equation (1) can be written in matrix form and such a matrix defines the evolution

operator (which is usually nonunitary) U‖(t) acting in H‖:

|ψ; t〉‖ = U‖(t)|ψ; t0 = 0〉‖
def= U‖(t)|ψ〉‖, (3)

where,

|ψ〉‖ ≡ q1|1〉 + q2|2〉, (4)

1This paper is a shortened version of [1].
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and |1〉 stands for the vectors of the |K0〉, |B0〉 type and |2〉 denotes antiparticles of the partic-
le “1”: |K0〉, |B0〉, 〈j |k〉 = δjk, j, k = 1, 2.

In many papers it is assumed that the real parts, �(·), of the diagonal matrix elements of
H‖, �(hjj) ≡Mjj , (j = 1, 2), where

hjk = 〈j |H‖|k〉, (j, k = 1, 2), (5)

correspond to the masses of particle “1” and its antiparticle “2” respectively [3–7], (and such
an interpretation of �(h11) and �(h22) will be used in this paper), whereas the imaginary parts,
�(·), �(hjj) ≡ −1

2Γjj , (j = 1, 2) interpreted as the decay widths of these particles [3–7]. Such
an interpretation seems to be consistent with the recent and the early experimental data for
neutral kaon and similar complexes [8].

Relations between matrix elements of H‖ implied by CPT-transformation properties of the
Hamiltonian H of the total system, containing neutral kaon complex as a subsystem, are cru-
cial for designing CPT-invariance and CP-violation tests and for proper interpretation of their
results. The aim of this talk is to examine the properties of the approximate and exact H‖
generated by the CPT-symmetry of the total system under consideration and independent of
the approximation used.

2 HLOY and CPT-symmetry

Now, let us consider briefly some properties of the LOY model. Let H be total (self-adjoint)
Hamiltonian, acting in H – then the total unitary evolution operator U(t) fulfills the Schrödinger
equation

i
∂

∂t
U(t)|φ〉 = HU(t)|φ〉, U(0) = I, (6)

where I is the unit operator in H, |φ〉 ≡ |φ; t0 = 0〉 ∈ H is the initial state of the system:

|φ〉 ≡ |ψ〉‖. (7)

In our case U(t)|φ〉 ≡ |φ; t〉.
Let P denote the projection operator onto the subspace H‖: PH = H‖, P = P 2 = P+, then

the subspace of decay products H⊥ equals H⊥ = (I − P )H def= QH, and Q ≡ I − P . For the
case of neutral kaons or neutral B-mesons, etc., the projector P can be chosen as follows:

P ≡ |1〉〈1| + |2〉〈2|. (8)

We assume that time-independent basis vectors |K0〉 and |K0〉 are defined analogously to cor-
responding vectors used in LOY theory of time evolution in neutral kaon complex [3]. In the
LOY approach it is assumed that vectors |1〉, |2〉 considered above are eigenstates of H(0) for
2-fold degenerate eigenvalue m0:

H(0)|j〉 = m0|j〉, j = 1, 2, (9)

where H(0) is a so called free Hamiltonian, H(0) ≡ Hstrong = H −HW , and HW denotes weak
and other interactions which are responsible for transitions between eigenvectors of H(0), i.e.,
for the decay process.

The condition guaranteeing the occurrence of transitions between subspaces H‖ and H⊥, i.e.,
a decay process of states in H‖, can be written as follows [P,HW ] 
= 0, that is

[P,H] 
= 0. (10)
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Usually, in LOY and related approaches, it is assumed that ΘH(0)Θ−1 = H(0)+ ≡ H(0), where
Θ is the antiunitary operator, Θ def= CPT . The subspace of neutral kaons H‖ is assumed to be
invariant under Θ:

ΘPΘ−1 = P+ ≡ P. (11)

In the kaon rest frame, the time evolution is governed by the Schrödinger equation (6), where
the initial state of the system has the form (7), (4). Within assumptions (9), (10) the WW
approach, which is the source of the LOY method, leads to the following formula for HLOY (e.g.,
see [3–5,7]):

HLOY = m0P − Σ(m0) ≡ PHP − Σ(m0) = MLOY − i

2
ΓLOY, (12)

where it has been assumed that 〈1 |HW |2〉 = 〈1 |HW |2〉∗ = 0 (see [3–7]). Here

Σ(ε) = PHQ
1

QHQ− ε− i0
QHP. (13)

The matrix elements hLOY
jk of HLOY are

hLOY
jk = Hjk − Σjk(m0) = MLOY

jk − i

2
ΓLOY

jk (j, k = 1, 2), (14)

where, in this case,

Hjk = 〈j |H |k〉 ≡ 〈j | (H(0) +HW ) |k〉 ≡ m0δjk + 〈j |HW |k〉, (15)

and Σjk(ε) = 〈j |Σ(ε) |k〉.
Now, if ΘHW Θ−1 = H+

W ≡ HW , that is if

[Θ, H] = 0, (16)

then using, e.g., the following phase convention [4–7]

Θ|1〉 def= −|2〉, Θ|2〉 def= −|1〉, (17)

and taking into account that 〈ψ |ϕ〉 = 〈Θϕ |Θψ〉, one easily finds from (12)–(15) that

hLOY
11

Θ − hLOY
22

Θ
= 0, (18)

and thus

MLOY
11 = MLOY

22 , (19)

(where hLOY
jk

Θ denotes the matrix elements of HΘ
LOY – of the LOY effective Hamiltonian when

the relation (16) holds), in the CPT-invariant system. This is the standard result of the LOY
approach and this is the picture which one meets in the literature [3–6,8].

3 Beyond the LOY approximation

The more accurate approximate formulae for H‖(t) have been derived in [9] using the Krolikows-
ki–Rzewuski equation for the projection of a state vector [10], which results from the Schrödinger
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equation (6) for the total system under consideration, and, in the case of initial conditions of
the type (7), takes the following form

(
i
∂

∂t
− PHP

)
U‖(t) = −i

∫ ∞

0
K(t− τ)U‖(τ)dτ, (20)

where U‖(0) = P , K(t) = Θ(t)PHQ exp(−itQHQ)QHP , and Θ(t) = {1 for t ≥ 0, 0 for t < 0}.
The integro-differential equation (20) can be replaced by the following differential one (see

[9–13])
(
i
∂

∂t
− PHP − V||(t)

)
U‖(t) = 0, (21)

where PHP + V||(t)
def= H||(t). Taking into account (20) and (21) or (1) one finds

V‖(t)U‖(t) = −i
∫ ∞

0
K(t− τ)U‖(τ)dτ. (22)

Using this relation, one finds to the lowest nontrivial order that [9]

V‖(t) ∼= V
(1)
‖ (t) def= −i

∫ ∞

0
K(t− τ) exp [i(t− τ)PHP ]dτ. (23)

From (22) one can conclude that [9, 13]

H‖(0) ≡ PHP, V‖(0) = 0, V‖(t→ 0) � −itPHQHP. (24)

In the case of conserved CPT and of H such that H12 = H21 = 0, from (23) one finds that
H|| = m0P − Σ(m0) ≡ HLOY.

On the other hand, in the case

H12 = H∗
21 
= 0, (25)

the form of H|| is much more complicated. For example in the case of conserved CPT, for-
mula (23) leads to matrix elements of H|| [7, 14], which differ from (14). Indeed, in the case

of preserved CPT-symmetry (16), one finds H11 = H22, which implies that H11 ≡ H22
def= H0,

and [9] Σ11(ε = ε∗) ≡ Σ22(ε = ε∗) def= Σ0(ε = ε∗). Therefore matrix elements vΘ
jk ≡ 〈j |V Θ

|| |k〉,
(j, k = 1, 2) of operator V Θ

‖ (here V Θ
‖ denotes V‖ when (16) occurs and V||

def= lim
t→∞V

(1)
|| (t)) take

the following form

vΘ
j1 = −1

2

{
Σj1(H0 + |H12|) + Σj1(H0 − |H12|)

+
H21

|H12|
Σj2(H0 + |H12|) −

H21

|H12|
Σj2(H0 − |H12|)

}
,

vΘ
j2 = −1

2

{
Σj2(H0 + |H12|) + Σj2(H0 − |H12|)

+
H12

|H12|
Σj1(H0 + |H12|) −

H12

|H12|
Σj1(H0 − |H12|)

}
. (26)

Finally, assuming |H12| � |H0|, and using relation (5) and the expression (14), we obtain for
the CPT–invariant system [15,16]

hΘ
j1 � hLOY

j1 −H21
∂Σj2(x)
∂x

∣∣∣∣∣
x=H0

, hΘ
j2 � hLOY

j2 −H12
∂Σj1(x)
∂x

∣∣∣∣∣
x=H0

, (27)
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where hjk = Hjk + vjk and j = 1, 2. From these formulae we conclude that, e.g., the difference
between diagonal matrix elements of HΘ

‖ , which plays an important role in designing CPT-
invariance tests for the neutral kaons system, equals

∆h def= h11 − h22 � H12
∂Σ21(x)
∂x

∣∣∣∣∣
x=H0

−H21
∂Σ12(x)
∂x

∣∣∣∣∣
x=H0


= 0, (28)

which differs from the LOY results (18), (19).

4 CPT and the exact effective Hamiltonian

The aim of this Section is to show, that contrary to the LOY conclusion (18), diagonal matrix
elements of the exact effective Hamiltonian H|| cannot be equal when the total system under
consideration is CPT invariant but CP noninvariant. This will be done by means of the method
used in [17].

Universal properties of the (unstable) particle–antiparticle subsystem of the system described
by the Hamiltonian H, for which the relation (16) holds, can be extracted from the matrix
elements of the exact U||(t) appearing in (3). Such U||(t) has the following form

U||(t) = PU(t)P, (29)

where P is defined by the relation (8), and U(t) is the total unitary evolution operator U(t),
which solves the Schrödinger equation (6). Operator U||(t) acts in the subspace of unstable states
H|| ≡ PH. Of course, U||(t) has nontrivial form only if (10) holds, and only then transitions of
states from H|| into H⊥ and vice versa, i.e., decay and regeneration processes, are allowed.

Using the matrix representation one finds

U||(t) ≡
(

A(t) 0
0 0

)
, A(t) =

(
A11(t) A12(t)
A21(t) A22(t)

)
, (30)

where 0 denotes the suitable zero submatrices and a submatrix A(t) is the (2×2) matrix acting
in H|| and Ajk(t) = 〈j |U||(t) |k〉 ≡ 〈j |U(t) |k〉, (j, k = 1, 2).

Now assuming (16) and using the phase convention (17), [3–5], one easily finds that [6,18,19]

A11(t) = A22(t). (31)

Note that assumptions (16) and (17) give no relations between A12(t) and A21(t).
The important relation between amplitudes A12(t) and A21(t) follows from the famous Khal-

fin’s Theorem [6, 18, 19]. This Theorem states that in the case of unstable states, if amplitudes
A12(t) and A21(t) have the same time dependence

r(t) def=
A12(t)
A21(t)

= const ≡ r, (32)

then it must be |r| = 1.

For unstable particles the relation (31) means that decay laws pj(t)
def= |Ajj(t)|2, (where

j = 1, 2), of the particle |1〉 and its antiparticle |2〉 are equal, p1(t) ≡ p2(t). The consequence of
this latter property is that the decay rates of the particle |1〉 and its antiparticle |2〉 must be equal
too. From (31) it does not follow that the masses of the particle “1” and the antiparticle “2”
should be equal.
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More conclusions about the properties of the matrix elements of H|| one can infer analyzing
the following identity [20,11–13]

H|| ≡ H||(t) = i
∂U||(t)
∂t

[U||(t)]−1 ≡ i
∂A(t)
∂t

[A(t)]−1. (33)

Relation (33) must be fulfilled by the exact as well as by every approximate effective Hamiltonian
governing the time evolution in every two-dimensional subspace H|| of states H [20, 11–13].

It is easy to find from (33) the general formulae for the diagonal matrix elements, hjj(t), of
H||(t), in which we are interested. We have

h11(t) =
i

det A(t)

(
∂A11(t)
∂t

A22(t) −
∂A12(t)
∂t

A21(t)
)
, (34)

h22(t) =
i

det A(t)

(
−∂A21(t)

∂t
A12(t) +

∂A22(t)
∂t

A11(t)
)
. (35)

Now, assuming (16) and using the consequence (31) of this assumption, one finds

h11(t) − h22(t) = −iA12(t)A21(t)
det A(t)

∂

∂t
ln

(
A12(t)
A21(t)

)
. (36)

This result means that in the considered case for t > 0 the following Theorem holds:

h11(t) − h22(t) = 0 ⇔ A12(t)
A21(t)

= const, (t > 0). (37)

Thus for t > 0 the problem under studies is reduced to the Khalfin’s Theorem (see the rela-
tion (32)).

From (34) and (35) it is easy to see that at t = 0

hjj(0) = 〈j |H | j〉, (j = 1, 2), (38)

which means that in a CPT invariant system (16) in the case of pairs of unstable particles,
for which transformations of type (17) hold, the unstable particles “1” and “2” are created at
t = t0 ≡ 0 as particles with equal masses: M11(0) = M22(0) ≡ 〈1 |H |1〉.

Now let us go on to analyze conclusions following from the Khalfin’s Theorem. CP nonin-
variance requires that |r| 
= 1 [6, 19] (see also [3–5, 8]). This means that in such a case it must
be r = r(t) 
= const. So, if in the system considered the property (16) holds but [CP, H] 
= 0,
and the unstable states “1” and “2” are connected by a relation of type (17), then at t > 0 it
must be (h11(t) − h22(t)) 
= 0 in this system.

Let us focus our attention on � (h11(t)−h22(t)). Following the method used in [12] and using
assumption (11) and the identity (33), after some algebra, one finds [21]

[Θ, H‖(t)] = A(t) + B(t), (39)

where:

A(t) = P [Θ, H]U(t)P (U‖(t))−1, B(t) =
{
PH −H‖(t)P

}
[Θ, U(t)]P (U‖(t))−1. (40)

From (39) we find

ΘH‖(t)Θ−1 −H‖(t) ≡ (A(t) + B(t))Θ−1. (41)

Using this latter relation one finds that

h11(t)∗ − h22(t) = 〈2 | (A(t) + B(t))Θ−1 |2〉. (42)
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Adding expression (42) to its complex conjugate one gets

�(h11(t) − h22(t)) = �〈2 | (A(t) + B(t))Θ−1 |2〉. (43)

We are considering the case of unstable states, i.e., states |1〉, |2〉, which lead to such pro-
jection operator P (8) that condition (10) holds. In this case we have ΘU(t) = U+(t)Θ, which
gives ΘU‖(t) = U+

‖ (t)Θ, ΘU−1
‖ (t) = (U+

‖ (t))−1Θ, and [Θ, U(t)] = −2i(�U(t))Θ. This relation
leads to the following result in the case of the conserved CPT-symmetry

B(t) = −2iP
{
H −H‖(t)P

}
(ImU(t))P (U+

‖ (t))−1Θ. (44)

Formula (44) allows us to conclude that 〈2 | B(0)Θ−1 |2〉 = 0 and �(〈2 | B(t > 0)Θ−1 |2〉) 
= 0,
if condition (16) holds. This means that in this case it must be �(h11(t)) 
= �(h22(t)) for t > 0.
So, there is no possibility for �(h11) to equal �(h22) for t > 0 in the considered case of P
fulfilling the condition (10) (i.e., for unstable states) when CPT-symmetry is conserved: It must
be �(h11) 
= �(h22).

Assuming the LOY interpretation of �(hjj(t)), (j = 1, 2), one can conclude from the Khalfin’s
Theorem and from the properties (37), (43), (44) that if A12(t), A21(t) 
= 0 for t > 0 and if
the total system considered is CPT-invariant, but CP-noninvariant, then M11(t) 
= M22(t) for
t > 0, that is, that contrary to the case of stable particles (the bound states), the masses of
the simultaneously created unstable particle “1” and its antiparticle “2”, which are connected
by the relation (17), need not be equal for t > t0 = 0. Of course, such a conclusion contradicts
the standard LOY result (18), (19). However, one should remember that the LOY description
of neutral K mesons and similar complexes is only an approximate one, and that the LOY
approximation is not perfect. On the other hand the relation (37) and the Khalfin’s Theorem
follow from the basic principles of the quantum theory and are rigorous. Consequently, their
implications should also be considered as rigorous.

5 Final remarks

Note that properties of the more accurate approximation described in Section 3 are consistent
with the general properties and conclusions obtained in Section 4 for the exact effective Hamil-
tonian – compare (24) and (38) and relations (37) with (28). From the result (28) it follows
that in the case of the approximate H||, ∆h = 0 can be achieved only if H12 = H21 = 0. This
means that if the first order |∆S| = 2 interactions are forbidden in the K0,K0 complex then
predictions following from the use of the mentioned more accurate approximation and from the
LOY theory should lead to the the same masses for K0 and for K0. This does not contradict
the results of Section 3 derived for the exact H||: the mass difference is very, very small and
should arise at higher orders of the more accurate approximation. On the other hand from (28)
it follows that ∆h 
= 0 if and only if H12 
= 0. This means that if measurable deviations from the
LOY predictions concerning the masses of, e.g. K0, K0 mesons are ever detected, then the most
plausible interpretation of this result will be the existence of first order |∆S| = 2 interactions in
the system considered.
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