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It is argued that the massive gauge field theory without the Higgs mechanism can well
be set up on the gauge-invariance principle based on the viewpoint that a massive gauge
field must be viewed as a constrained system and the Lorentz condition, as a constraint,
must be introduced from the beginning and imposed on the Yang–Mills Lagrangian. The
quantum theory for the massive gauge fields may perfectly be established by the quantization
performed in the Hamiltonian or the Lagrangian path-integral formalism by means of the
Lagrange undetermined multiplier method and shows good renormalizability and unitarity.

It is the prevailing viewpoint that the massive gauge field theory can not be set up without
introducing the Higgs mechanism. The first obstacle is the gauge-non-invariance of the mass
term in the massive Yang–Mills Lagrangian for a massive gauge field. On the contrary, we
present an argument to show that the conventional viewpoint is not true [1]. In fact, a certain
massive gauge field theory can be well established on the basis of gauge-invariance principle
without recourse to the Higgs mechanism. The basic ideas are stated in the following.

(1) A massive gauge field must be viewed as a constrained system. In the previous attempt
of building up the massive non-Abelian gauge field theory, the massive Yang–Mills Lagrangian
density written below was chosen to be the starting point [2, 3]

L = −1
4F aµνF a

µν + 1
2m2AaµAa

µ, (1)

where Aa
µ are the vector potentials for the non-Abelian massive gauge fields,

F a
µν = ∂µAa

ν − ∂νA
a
µ + gfabcAb

µAc
ν (2)

are the field strengths and m is the mass of gauge bosons. The first term in the Lagrangian is
the ordinary Yang–Mills Lagrangian which is gauge-invariant under a whole Lie group and used
to determine the form of interactions among the gauge fields themselves. The second term in the
Lagrangian is the mass term which is not gauge-invariant and only affects the kinematic property
of the fields. The above Lagrangian itself was ever considered to give a complete description
of the massive gauge field dynamics. This consideration is not correct because the Lagrangian
is not only not gauge-invariant, but also contains redundant unphysical degrees of freedom.
As one knows, a full vector potential Aµ(x) can be split into two Lorentz-covariant parts: the
transverse vector potential Aµ

T (x) and the longitudinal vector potential Aµ
L(x), Aµ(x) = Aµ

T (x)+
Aµ

L(x). The transverse vector potential Aaµ
T (x) contains three independent spatial components

which is sufficient to represent the polarization states of a massive vector boson. Whereas, the
longitudinal vector potential Aaµ

L appears to be a redundant unphysical variable which must be
constrained by introducing the Lorentz condition

ϕa ≡ ∂µAa
µ = 0, (3)

whose solution is Aaµ
L = 0. With this solution, the massive Yang–Mills Lagrangian may be

expressed in terms of the independent dynamical variables Aaµ
T (x),

L = −1
4F aµν

T F a
Tµν + 1

2m2Aaµ
T Aa

Tµ, (4)
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which gives a complete description of the massive gauge field dynamics. If we want to represent
the dynamics in the whole space of the full vector potential as described by the massive Yang–
Mills Lagrangian in equation (1), the massive gauge field must be treated as a constrained
system. In this case, the Lorentz condition in equation (3), as a constraint, is necessary to be
introduced from the onset and imposed on the Lagrangian in equation (1) so as to guarantee
the redundant degrees of freedom to be eliminated from the Lagrangian.

(2) The gauge-invariance should generally be required for the action written in the physical
subspace. Usually, the gauge-invariance is required to the Lagrangian. From the dynamical
viewpoint, as we know, the action is of more essential significance than the Lagrangian. This
is why in Mechanics and Field Theory, to investigate the dynamical and symmetric properties
of a system, one always starts from the action of the system. Similarly, when we examine the
gauge-symmetric property of a field system, in more general, we should also see whether the
action of the system is gauge-invariant or not. In particular, for a constrained system such as
the massive gauge field, we should see whether or not the action represented by the independent
dynamical variables is gauge-invariant. This point of view is familiar to us in the mechanics for
constrained systems. Certainly, in some special cases, the Lagrangian itself is gauge-invariant
in the physical subspace so that the gauge-invariance of the action is ensured. This situation
happens for the massless gauge fields and the massive Abelian gauge field. For the non-Abelian
gauge fields, the infinitesimal gauge transformation usually is given by [3]

δAa
µ = Dab

µ θb, (5)

where

Dab
µ = δab∂µ − gfabcAc

µ. (6)

This gauge transformation is different from the Abelian one in that in the physical subspace
defined by the Lorentz condition, i.e., spanned by the transverse vector potential Aaµ

T , the fields
still undergo nontrivial gauge transformations

δAa
Tµ = Dab

Tµθb, (7)

where

Dab
Tµ = δab∂µ − gfabcAc

Tµ. (8)

Therefore, the mass term in the massive Yang–Mills Lagrangian written in equation (4) is not
gauge-invariant. But, the action given by this Lagrangian is invariant with respect to the gauge
transformation shown in equations (7) and (8). In fact, noticing the identity: fabcAaµ

T Ab
Tµ = 0

and the transversity condition (an identity): ∂µAa
Tµ = 0, it is easy to see

δS = −m2

∫
d4xθa∂µAa

Tµ = 0.

This shows that the dynamics of massive non-Abelian gauge fields is gauge-invariant. Alter-
natively, the gauge-invariance may also be seen from the action given by the Lagrangian in
equation (1) which is constrained by the Lorentz condition in equation (3). Under the gauge
transformation written in equation (5) and (6), noticing the identity fabcAaµAb

µ = 0 and the
Lorentz condition, it can be found that

δS = −m2

∫
d4xθa∂µAa

µ = 0.

This suggests that the massive non-Abelian gauge field theory may also be set up on the basis
of gauge-invariance principle.
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(3) Only infinitesimal gauge transformations need to be considered in the physical subspace.
In examining the gauge invariance of the action for the massive non-Abelian gauge fields, we
confine ourself to consider the infinitesimal gauge transformation only. The reason for this arises
from the fact that the Lorentz condition limits the gauge transformation only to take place in the
vicinity of the unity of the gauge group. In other words, the residual gauge degrees of freedom
existing in the physical subspace are characterized by the infinitesimal gauge transformations.
This fact was pointed out in the pioneering article by Faddeev and Popov for the quantization of
massless non-Abelian gauge fields [4]. Usually, the dynamics of massless gauge fields is described
by the Yang–Mills Lagrangian. It is well-known that the Yang–Mills Lagrangian itself is not
quantizable, namely, it cannot be used to construct a convergent generating functional of Green’s
functions even though it is gauge-invariant with respect to the whole gauge group. This is be-
cause the Yang–Mills Lagrangian contains redundant unphysical degrees of freedom and hence is
not complete for describing the massless gauge field dynamics unless a suitable constraint such as
the Lorentz condition is introduced to eliminate the unphysical degrees of freedom. In the article
by Faddeev and Popov, the Lorentz condition is introduced through the following identity [4]

∆[A]
∫

D(g)δ[∂µAg
µ] = 1,

which is inserted into the functional integral representing the vacuum-to-vacuum transition
amplitude. After doing this, the authors said that “We must know ∆[A] is only for the trans-
verse fields and in this case all contributions to the last integral are given in the neighbor-
hood of the unity element of the group”. The delta-functional in the above identity implies
∂µ(Ag)a

µ = ∂µAa
µ = 0 which represents the gauge-invariance of the Lorentz condition because

the Lorentz condition is required to hold for all the field variables including the ones before
and after gauge transformations. In the physical subspace where only the transverse fields are
allowed to appear, only infinitesimal gauge transformations around the unity element are per-
mitted and needed to be considered in the course of Faddeev–Popov’s quantization even though
the Yang–Mills Lagrangian used is invariant under the whole gauge group. Obviously, there are
no reasons of considering the gauge-transformation property of the fields in the region beyond
the physical subspace because the fields do not exist in that region. By this point, it can be
understood why in the ordinary quantum gauge field theories such as the standard model, the
BRST-transformations are all taken to be infinitesimal.

According to the general procedure, the Lorentz condition (3) may be incorporated into
the Lagrangian (1) by the Lagrange undetermined multiplier method to give a generalized La-
grangian. In the first order formalism, this Lagrangian is written as [5]

L = 1
4F aµνF a

µν − 1
2F aµν(∂µAa

ν − ∂νA
a
µ + gfabcAb

µAc
ν) + 1

2m2AaµAa
µ + λa∂µAa

µ, (9)

where Aa
µ and F a

µν are now treated as the mutually independent variables and λa are chosen to
represent the Lagrange multipliers. Using the canonically conjugate variables defined by

Πa
µ(x) =

∂L
∂Ȧaµ

= F a
µ0 + λaδµ0 =

{
F a

k0 = Ea
k , if µ = k = 1, 2, 3,

λa = −Ea
0 , if µ = 0,

the Lagrangian in equation (9) may be rewritten in the canonical form

L = EaµȦa
µ + Aa

0C
a − Ea

0ϕa −H, (10)

where

Ca = ∂µEa
µ + gfabcAb

kE
ck + m2Aa

0, (11)

H = 1
2(Ea

k)2 + 1
4(F a

ij)
2 + 1

2m2
[
(Aa

0)
2 + (Aa

k)
2
]
, (12)
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here Ea
µ = (Ea

0 , Ea
k) is a Lorentz vector, H is the Hamiltonian density in which F a

ij are defined in
equation (2). In the above, the four-dimensional and the spatial indices are respectively denoted
by the Greek and Latin letters. From equation (10), it is clearly seen that the second and third
terms are given respectively by incorporating the constraint condition

Ca = 0, (13)

where Ca was represented in equation (11) and the Lorentz condition in equation (3) into the
Lagrangian.

Now, let us first perform the quantization of the massive non-Abelian gauge fields in the
Hamiltonian path-integral formalism [5]. In accordance with the general procedure of the quan-
tization, we should first write the generating functional of Green’s functions via the independent
canonical variables which are now chosen to be the transverse parts of the vectors Aa

µ and Ea
µ

Z[J ] =
1
N

∫
D(Aaµ

T , Eaµ
T ) exp

{
i

∫
d4x

[
Eaµ

T Ȧa
Tµ −H∗(Aaµ

T , Eaµ
T ) + Jaµ

T Aa
Tµ

]}
, (14)

where H∗(Aaµ
T , Eaµ

T ) is the Hamiltonian which is obtained from the Hamiltonian in equation (12)
by replacing the constrained variables Aaµ

L and Eaµ
L with the solutions of equations (3) and (13)

H∗(Aaµ
T , Eaµ

T ) = H(Aaµ, Eaµ) |ϕa=0,Ca=0 .

As mentioned before, equation (3) leads to Aaµ
L = 0. Noticing this solution and the decomposi-

tion Eaµ(x) = Eaµ
T + Eaµ

L (x), when setting

Eaµ
L (x) = ∂µ

xQa(x), (15)

where Qa(x) is a scalar function, one may get from equation (13) an equation obeyed by the
scalar function Qa(x)

Kab(x)Qb(x) = W a(x), (16)

where

Kab(x) = δab�x − gfabcAcµ
T (x)∂x

µ and W a(x) = gfabcEbµ
T (x)Ac

Tµ(x) − m2Aa0
T (x).

With the aid of the Green’s function Gab(x − y) (the ghost particle propagator) which satisfies
the following equation

Kac(x)Gcb(x − y) = δabδ4(x − y)

one may find the solution to the equation in equation (16) as follows

Qa(x) =
∫

d4yGab(x − y)W b(y). (17)

From the expressions given in equations (15) and (17), one can see that the Eaµ
L (x) is a com-

plicated functional of the variables Aaµ
T and Eaµ

T so that the Hamiltonian H∗(Aaµ
T , Eaµ

T ) is of
much more complicated functional structure which is not convenient for constructing the dia-
grammatic technique in the perturbation theory. Therefore, it is better to express the generating
functional in equation (14) in terms of the variables Aa

µ and Ea
µ. For this purpose, it is necessary

to insert the following delta-functional into equation (14) [5]

δ[Aaµ
L ]δ[Eaµ

L − Eaµ
L (Aaµ

T , Eaµ
T )] = det Mδ[Ca]δ[ϕa], (18)
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where M is the matrix whose elements are defined by the Poisson bracket

Mab(x, y) =
{

Ca(x), ϕb(y)
}

=
∫

d4x

{
δCa

δAa
µ(x)

δϕb

δEaµ(x)
− δCa

δEa
µ(x)

δϕb

δAaµ(x)

}

= Dab
µ (x)∂µ

xδ4(x − y).

The relation in equation (18) is easily derived from equations (3) and (13) by applying the
property of delta-functional. Upon inserting equation (18) into equation (14) and utilizing the
Fourier representation of the delta-functional

δ[Ca] =
∫

D(ηa/2π)ei
∫

d4xηaCa
,

we have

Z[J ] =
1
N

∫
D(Aa

µ, Ea
µ, ηa)

× det Mδ[∂µAa
µ] exp

{
i

∫
d4x[EaµȦa

µ + ηaCa −H(Aaµ, Eaµ) + JaµAa
µ]

}
.

In the above exponential, there is a Ea
0 -related term Ea

0 (∂0A
a
0 − ∂0η

a) which permits us to
perform the integration over Ea

0 , giving a delta-functional

δ[∂0A
a
0 − ∂0η

a] = det |∂0|−1δ[Aa
0 − ηa].

The determinant det |∂0|−1, as a constant, may be put in the normalization constant N and
the delta-functional δ[Aa

0 − ηa] will disappear when the integration over ηa is carried out. The
integral over Ea

k is of Gaussian-type and hence easily calculated. After these manipulations, we
arrive at

Z[J ] =
1
N

∫
D(Aa

µ) det Mδ[∂µAa
µ]

× exp
{

i

∫
d4x

[−1
4F aµνF a

µν + 1
2m2AaµAa

µ + JaµAa
µ

]}
. (19)

When employing the familiar expression [4]

det M =
∫

D(C̄a, Ca) exp
{

i

∫
d4xd4yC̄a(x)Mab(x, y)Cb(y)

}
,

where C̄a(x) and Ca(x) are the mutually conjugate ghost field variables and the following limit
for the Fresnel functional

δ[∂µAa
µ] = lim

α→0
C[α]e−

i
2α

∫
d4x(∂µAa

µ)2 ,

where C[α] ∼ ∏
x( i

2πα)1/2 and supplementing the external source terms for the ghost fields, the
generating functional in equation (19) is finally given in the form

Z[J, ξ, ξ] =
1
N

∫
D(Aa

µ, C̄a, Ca) exp
{

i

∫
d4x[Leff + JaµAa

µ + ξ
a
Ca + C̄aξa]

}
, (20)

where

Leff = −1
4F aµνF a

µν + 1
2m2AaµAa

µ − 1
2α(∂µAa

µ)2 − ∂µC̄aDab
µ Cb, (21)
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which is the effective Lagrangian for the quantized massive non-Abelian gauge field in which
the third and fourth terms are the so-called gauge-fixing term and the ghost term respectively.
In equation (20), the limit α → 0 is implied. Certainly, the theory may be given in arbitrary
gauges (α �= 0). In this case, as will be seen soon later, the ghost particle will acquire a spurious
mass µ =

√
αm.

To confirm the result of the quantization given above, let us turn to quantize the massive
non-Abelian gauge fields in the Lagrangian path-integral formalism. For later convenience,
the massive Yang–Mills Lagrangian in equation (1) and the Lorentz constraint condition in
equation (3) are respectively generalized to the following forms

Lλ = −1
4F aµνF a

µν + 1
2m2AaµAa

µ − 1
2α(λa)2 (22)

and

∂µAa
µ + αλa = 0, (23)

where λa(x) are the extra functions which will be identified with the Lagrange multipliers and
α is an arbitrary constant playing the role of gauge parameter. According to the general pro-
cedure for constrained systems, the constraint condition in equation (23) may be incorporated
into the Lagrangian in equation (22) by the Lagrange undetermined multiplier method, giving
a generalized Lagrangian

Lλ = −1
4F aµνF a

µν + 1
2m2AaµAa

µ + λa∂µAa
µ + 1

2α(λa)2. (24)

This Lagrangian is obviously not gauge-invariant. However, for building up a correct gauge
field theory, it is necessary to require the action given by the Lagrangian in equation (24) to
be invariant with respect to the gauge transformations shown in equations (5) and (6) so as to
guarantee the dynamics of the gauge field to be gauge-invariant. By this requirement, noticing
the identity fabcAaµAb

µ = 0 and applying the constraint condition in equation (23), we have

δSλ = − 1
α

∫
d4x∂νAa

ν(x)∂µ(Dab
µ (x)θb(x)) = 0,

where

Dab
µ (x) = δab µ2

�x
∂x

µ + Dab
µ (x),

in which µ2 = αm2 and Dab
µ (x) was defined in equation (6). From equation (23), we see

1
α∂νAa

ν = −λa �= 0. Therefore, to ensure the action to be gauge-invariant, the following con-
straint condition on the gauge group is necessary to be required

∂µ
x (Dab

µ (x)θb(x)) = 0. (25)

These are the coupled equations satisfied by the parametric functions θa(x) of the gauge group.
Since the Jacobian of the equations is not singular, detM �= 0 where M is the matrix whose
elements are

Mab(x, y) =
δ(∂µ

xDac
µ (x)θc(x))
δθb(y)

∣∣∣
θ=0

= δab(�x + µ2)δ4(x − y) − gfabc∂µ
x (Ac

µ(x)δ4(x − y)),

the above equations are solvable and would give a set of solutions which express the functions
θa(x) as functionals of the vector potentials Aa

µ(x). The constraint conditions in equation (25)
may also be incorporated into the Lagrangian in equation (24) by the Lagrange undetermined
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multiplier method. In doing this, it is convenient, as usually done, to introduce ghost field
variables Ca(x) in such a fashion [3–5]: θa(x) = ςCa(x), where ς is an infinitesimal Grassmann’s
number. In accordance with this relation, the constraint condition in equation (25) can be
rewritten as

∂µ(Dab
µ Cb) = 0, (26)

which usually is called ghost equation. When this constraint condition is incorporated into the
Lagrangian in equation (24) by the Lagrange multiplier method, we obtain a more generalized
Lagrangian as follows

Lλ = −1
4F aµνF a

µν + 1
2m2AaµAa

µ + λa∂µAa
µ + 1

2α(λa)2 + C̄a∂µ(Dab
µ Cb), (27)

where C̄a(x), acting as Lagrange multipliers, are the new scalar variables conjugate to the ghost
variables Ca(x).

At present, we are ready to formulate the quantization of the massive gauge field in the
Lagrangian path-integral formalism. As we learn from the Lagrange multiplier method, the
dynamical and constrained variables as well as the Lagrange multipliers in equation (27) can
all be treated as free ones, varying arbitrarily. Therefore, we are allowed to use this kind of
Lagrangian to construct the generating functional of Green’s functions

Z[Jaµ, ξ
a
, ξa] =

1
N

∫
D(Aa

µ, C̄a, Ca, λa) (28)

× exp
{

i

∫
d4x[Lλ(x) + Jaµ(x)Aa

µ(x) + ξ
a(x)Ca(x) + C

a(x)ξa(x)]
}

,

where D(Aa
µ, . . . , λa) denotes the functional integration measure, Ja

µ , ξ
a and ξa are the external

sources coupled to the gauge and ghost fields and N is the normalization constant. Looking at
the expression of the Lagrangian in equation (27), it is seen that the integral over λa(x) is of
Gaussian-type. Upon completing the calculation of this integral, we finally arrive at

Z[Jaµ, ξ
a
, ξa] =

1
N

∫
D(Aa

µ, C̄a, Ca, ) (29)

× exp
{

i

∫
d4x[Leff(x) + Jaµ(x)Aa

µ(x) + ξ
a(x)Ca(x) + C

a(x)ξa(x)]
}

,

where

Leff = −1
4F aµνF a

µν + 1
2m2AaµAa

µ − 1
2α(∂µAa

µ)2 − ∂µC̄aDab
µ Cb. (30)

is the effective Lagrangian given in the general gauges. In the Landau gauge (α → 0), The
Lagrangian in equation (30) just gives the result in equation (21). It has been proved [1] that
the above quantization carried out by means of the Lagrange multiplier method is equivalent to
the Faddeev–Popov approach of quantization [4].

There are three points we would like to emphasize: (1) In the quantization by the Lagrange
multiplier method, the gauge-invariance is always to be required even in the arbitrary gauge.
Moreover, it has been found that the action given by the Lagrangian in equation (30) is invariant
under a kind of BRST-transformations [6]. Thus, the quantum non-Abelian gauge field theory is
set up from beginning to end on the firm basis of gauge-invariance. (2) In the Lagrangian path-
integral formalism, as shown before, the quantized result is derived by utilizing the infinitesimal
gauge transformations. This result is, as mentioned before, identical to that obtained by the
quantization in the Hamiltonian path-integral formalism. In the latter quantization, we only
need to calculate the classical Poisson brackets without concerning any gauge transformation.
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This fact reveals that to get a correct quantum theory in the Lagrangian path-integral formalism,
the infinitesimal gauge transformations are only necessary to be taken into account and thereby
confirms the fact that in the physical subspace restricted by the Lorentz condition, only the
infinitesimal gauge transformations are possible to exist. (3) From the generating functional
shown in equation (29) and (30), one may derive the gauge boson propagator as follows

iDab
µν(k) = −iδab

{
gµν − kµkν/k2

k2 − m2 + iε
+

αkµkν/k2

k2 − µ2 + iε

}
,

which is of good renormalizable behavior. In the zero-mass limit, this propagator with the massi-
ve Yang–Mills Lagrangian and the generating functional together all go over to the results given
in the massless gauge field theory, different from the quantum theory established previously
from the massive Yang–Mills Lagrangian alone without any constraint [7–10]. For the previous
theory, there occurs a severe contradiction in the zero-mass limit that the massive Yang–Mills
Lagrangian in equation (1) is converted to the massless one, but, the propagator is not and of a
singular behavior. In particular, the previous theory was shown to be nonrenormalizable [3,7–9]
because the unphysical longitudinal fields and residual gauge degrees of freedom are not excluded
from the theory.

Up to the present, we limit ourself to discuss the gauge fields themselves without concerning
fermion fields. For the gauge fields, in order to guarantee the mass term in the action to be gauge-
invariant, the masses of all gauge bosons are taken to be the same. If fermions are included,
obviously, the QCD with massive gluons fulfils this requirement because all the gluons can be
considered to have the same mass. Such a QCD, as has been proved, is not only renormalizable,
but also unitary [6]. The renormalizability and unitarity are warranted by the fact that the
unphysical degrees of freedom in the theory have been removed by the constraint conditions in
equations (23) and (26). The gauge-fixing term and the ghost term in equation (30) just play
the role of counteracting the unphysical degrees of freedom contained in the massive Yang–Mills
Lagrangian as verified by the perturbative calculations [6].
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