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Nonlinear Supersymmetry in Quantum Mechanics
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We study the Nonlinear (Polynomial, N -fold, . . . ) SUSY algebra in one-dimensional QM.
Its structure is determined by the type of conjugation operation (Hermitian conjugation
or transposition) and described with the help of the Super-Hamiltonian projection on the
zero-mode subspace of a supercharge. We show that the SUSY algebra with transposi-
tion symmetry is always polynomial in the Super-Hamiltonian if supercharges represent
differential operators of finite order. The appearance of the extended SUSY with several su-
percharges is analyzed and it is established that no more than two independent supercharges
may generate a nonlinear superalgebra. In the case with two independent supercharges we
find a nontrivial hidden symmetry operator. It is revealed that wave functions of all Super-
Hamiltonian bound states or, in the case of Super-Hamiltonian with periodic potential(s), all
periodic wave functions corresponding to boundaries between allowed and forbidden energy
bands are zero-modes of the hidden symmetry operator.

1 Introduction

In our report we consider the following topics: (i) Nonlinear SUSY algebras [1–3] with Hermi-
tian conjugation and transposition symmetries of supercharges, (ii) extended SUSY algebra and
appearance of antisymmetric symmetry operator (hidden symmetry operator), (iii) “strip-off”
problem, (iv) (in)dependence of supercharges, maximal number of coexisting independent super-
charges and optimal basis of supercharges, and (v) example: two independent supercharges of
2nd and 1st orders. The new (with respect to [4]) result presented in the paper is a description
of properties of antisymmetric symmetry operator for a Hamiltonian with periodic potential.
The proofs of presented results and a more complete list of references can be found in [4].

2 Four types of SUSY algebras with complex supercharges

Let h+ and h− be components of the matrix one-dimensional Schrödinger operator, a Super-
Hamiltonian,

H =
(

h+ 0
0 h−

)
=

( −∂2 + V1(x) 0
0 −∂2 + V2(x)

)
≡ −∂2I + V (x),

where ∂ ≡ d/dx. The isospectral connection between Hamiltonians h+ and h− is provided by
intertwining relations with the help of Crum–Darboux differential operators q±N ,

h+q+
N = q+

Nh−, q−Nh+ = h−q−N , q±N =
N∑

k=0

w±
k (x)∂k, w±

N = const ≡ (∓1)N , (1)

which, in the framework of SUSY QM, are components of the supercharges,

Q =
(

0 q+
N

0 0

)
, Q̄ =

(
0 0

q−N 0

)
, Q2 = Q̄2 = 0, [H, Q] = [H, Q̄] = 0.
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According to known operator q+
N we can choose as q−N both (q+

N )t and (q+
N )† and vice versa,

where t and † denote transposition and Hermitian conjugation respectively. Thus, if coefficients
of q+

N are real then we have unique q−N = (q+
N )t = (q+

N )†, but if coefficients of q+
N are not real

then we have two different q−N type operators, (q+
N )t and (q+

N )†. Hence, we have in general four
different supercharges

Q, Q̄ = Qt, Q̄c = Q†, Qc = Q̄t
c,

pairs of which generates four SUSY algebras:

A1 ←→ (Q̄c, Q), A2 ←→ (Q̄, Q), A3 ←→ (Q̄c, Qc), A4 ←→ (Q̄, Qc).

Certain properties of A1,4 type complex SUSY algebras were considered in [2].

3 Superalgebras with transposition symmetry

The structure of SUSY algebras with real coefficient functions as well as the structure of the A2,3

type complex SUSY algebras is described by the following theorem.

Theorem 1 (on SUSY algebras with T -symmetry). Let us introduce two sets of N linearly
independent functions φ±

n (x) (n = 1, . . . , N) which represent complete sets of zero-modes of the
supercharge components (1),

q±Nφ±
n = 0, q−N = (q+

N )t.

Then1:
1) the Hamiltonians h± have finite matrix representations when acting on the set of functions

φ±
n (x),

h±φ∓
n =

∑
m

S±
nmφ∓

m,

2) the SUSY algebra closure with Q̄ = Qt takes the polynomial form,{
Q, Qt

}
= det

[
EI − S+

]
E=H

= det
[
EI − S−]

E=H
≡ PN (H), (2)

irrespectively on whether the Q type supercharge of order N is unique or there exist several such
supercharges for a given Super-Hamiltonian H.

Corollary 1. From (2) it is evident that eigenvalues of S+ and S− and their corresponding
degeneracies coincide.

4 Several supercharges and appearance of symmetry operators

Let us now examine the case when for the Super-Hamiltonian H there are two different super-
charges K and P of the type Q and of the orders N and N1 respectively,

K =
(

0 k+
N

0 0

)
, P =

(
0 p+

N1

0 0

)
, (3)

where k+
N and p+

N1
have real coefficient functions and N > N1. In particular, in the case

when complex supercharge Q exists, we can choose K and P as (Q + Q∗)/2 and (Q−Q∗)/(2i)
1The first proposition is a necessary condition for the Hamiltonian system to be quasi-exactly solvable and it

was investigated recently [5] within the notion of “conditional symmetry”.
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respectively, where ∗ denotes complex conjugation of coefficient functions. Thus, each of super-
charges K and P generates in our case a unique supercharge of type Q̄:

K̄ = Kt = K† =
(

0 0
k−

N 0

)
, k−

N = (k+
N )t,

P̄ = P t = P † =
(

0 0
p−N1

0

)
, p−N1

= (p+
N1

)t.

The existence of two supercharges of type Q (i.e. K and P ) conventionally implies the ex-
tension of SUSY algebra. To close the algebra one has to include all anticommutators between
supercharges. Two supercharges K and P generate two Polynomial SUSY,{

K, K†
}

= P̃N (H),
{

P, P †
}

= P̃N1(H),

which have to be embedded into a N = 2 SUSY algebra. The closure of the extended, N = 2
SUSY algebra is given by{

P, K†
}
≡ R =

(
p+

N1
k−

N 0
0 k−

Np+
N1

)
,

{
K, P †

}
≡ R̄ =

(
k+

Np−N1
0

0 p−N1
k+

N

)
.

Evidently the components of operators R, R̄ = R† = Rt are differential operators of N + N1

order commuting with the Hamiltonians h±, hence they form symmetry operators R, R̄ for the
Super-Hamiltonian. However, in general, they are not polynomials of the Hamiltonians h± and
these symmetries impose certain constraints on potentials.

Let us find the formal relation between the symmetry operators R, R̄ and the Super-Hamilto-
nian. These operators can be decomposed into a Hermitian and an anti-Hermitian parts,

B ≡ 1
2
(R+ R̄) ≡

(
b+ 0
0 b−

)
, iE ≡ 1

2
(R− R̄) ≡ i

(
e+ 0
0 e−

)
.

It can be shown that the Hermitian operator B is a polynomial of the Super-Hamiltonian of the
order Nb ≤ [(N +N1)/2] ≤ N−1. The second Hermitian symmetry operator E is antisymmetric,
E t = −E . Hence, if E does not vanish identically it is a differential operator of odd order and
cannot be realized by a polynomial of H. But at the same time

E2(H) ≡ 1
4

[
2(RR̄+ R̄R)− (R+ R̄)2

]
= P̃N (H)P̃N1(H)− B2(H) ≡ Pe(H) (4)

is polynomial of H. Thus the nontrivial operator E(H) is a non-polynomial function of H —
square root of equation (4) in an operator sense.

Closures of SUSY algebras A1–A4 can be written in terms of notation relating to real super-
charges K = (Q + Q∗)/2 and P = (Q−Q∗)/(2i) in the following form:

A1 : {Q, Q̄c} = P̃N (H) + P̃N1(H)− 2E(H),

A2 : {Q, Q̄} = P̃N (H)− P̃N1(H) + i2B(H),

A3 : {Qc, Q̄c} = P̃N (H)− P̃N1(H)− i2B(H),

A4 : {Qc, Q̄} = P̃N (H) + P̃N1(H) + 2E(H),

Q̄c = Q† = K† − iP †, Qc = Q∗ = K − iP, Q̄ = Qt = K† + iP †.

One can show that components of E(H) have the following important properties.
1. In the case when h± has bound states, wave functions Ψ±

i of all these states are zero-modes
of e±(h±) and corresponding energies E±

i are roots of the polynomial Pe(E):

e±(h±)Ψ±
i = e±(E±

i )Ψ±
i = 0, Pe(E±

i ) = 0. (5)

Among solutions of (5) one reveals also a zero-energy state at the bottom of continuum spectrum.



542 A.A. Andrianov and A.V. Sokolov

2. In the case, when the potential of h± is periodic, all boundaries between allowed and
forbidden energy bands E±

i are roots of Pe(E) and corresponding to these boundaries periodic
wave functions Ψ±

i are zero-modes of e±(h±) (see (5) again).
Thus (5) represents an algebraic equation on bound state energies or on energy-band bound-

aries of a system possessing two supersymmetries. On the other hand one could find also the
solutions of (5) which are not associated to any bound state or to any energy-band boundary.
The very appearance of such unphysical solutions is accounted for by the trivial possibility to
replicate supercharges by their multiplication on the polynomials of the Super-Hamiltonian and
it is discussed below.

5 “Strip-off” problem

The pair of two supersymmetries analyzed before may rigidly determine the class of poten-
tials V1,2 contracting the freedom in their choice from a functional one to a parametric one. On
the other hand, there exists a trivial possibility when the intertwining operators k±

N and p±N1
are

related by a factor depending on the Hamiltonian,

k±
N = F (h±)p±N1

= p±N1
F (h∓),

where F (x) is assumed to be a polynomial. Obviously in this case the symmetry operator E(H)
identically vanishes and the appearance of the second supercharge does not result in any restric-
tions on potentials.

More generally the orders of polynomial superalgebras and some of the roots of associated
polynomials may not be involved in determination of the structure of the potentials. In parti-
cular, let the operators k±

N and p±N1
be reducible to some lower-order ones k̃±

Ñ
and p̃±

Ñ1
,

k±
N = Fk(h±)k̃±

Ñ
= k̃±

Ñ
Fk(h∓), p±N1

= Fp(h±)p̃±
Ñ1

= p̃±
Ñ1

Fp(h∓), (6)

where Fk(y) and Fp(y) are polynomials. Then evidently the superalgebra generated by k̃±
Ñ

and p̃±
Ñ1

equally well characterizes the Super-Hamiltonian system with the same potentials.
Thus, we have come to the problem of how to discern the nontrivial part of a supercharge and

avoid multiple SUSY algebras generated by means of “dressing” (6). It can be systematically
performed with the help of the following theorem.

Theorem 2 (“strip-off” theorem). Let us admit the construction of the Theorem on SUSY
algebras with T -symmetry. Then the requirement that Jordan form of the matrix S− (or S+)
contains n pairs (and no more) of Jordan cells with equal eigenvalues λl and the sizes νl of
a smallest cell in the l-th pair is necessary and sufficient to ensure for the intertwining opera-
tor q+

N (or q−N ) to be represented in the factorized form:

q±N = q̃±
Ñ

n∏
l=1

(λl − h∓)νl ,

where q̃±
Ñ

are intertwining operators of order Ñ = N − 2
n∑

l=1

νl which cannot be decomposed

further on in the product similar to (6) with Fq(x) �= const.

Corollary 2. Jordan forms of S+ and S− are identical up to transposition of certain cells.
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6 Optimization of supercharges

Still the stripped-off supercharges k±
N and p±N1

do not necessarily represent an optimal set of
them and provide an optimal structure of the symmetry operator E(H). Let us illustrate it
with the help of the following example. One can show that there is the case when intertwining
operators of both pairs k±

N , p±N1
and t± ≡ p±N1

k∓
Np±N1

, p±N1
cannot be stripped-off, but at the

same time the latter pair is evidently more complex than the former. In addition, the composed
of t± and p±N1

symmetry operator Et(H) with components,

e±t = ±i
1
2
(t±p∓N1

− p±N1
t∓) = ∓i

1
2
(k±

Np∓N1
− p±N1

k∓
N )p±N1

p∓N1
= −e±P̃N1(h

±)

is not optimal because of the superfluous polynomial factor P̃N1(H).
Thus, if there are several SUSY generators we have not only such fundamental problems as

(i) to introduce the notion of (in)dependence of intertwining operators and (ii) to find out how
many independent intertwining operators can coexist, but also and the problem (iii) to define
an optimal basis of intertwining operators.

Let us define the intertwining operators q±i , i = 1, . . . , n to be dependent if and only if the
polynomials α±

i (y) exist such that not all of them are vanishing and

n∑
i=1

α±
i (h±)q±i = 0. (7)

If the relation (7) results in α±
i (y) = 0 for all i the corresponding SUSY generators are indepen-

dent. Evidently the (in)dependence of q+
i entails the (in)dependence of q−i and vice versa.

The following theorem plays a key role in resolution of how many independent supercharges
can commute with a given Super-Hamiltonian.

Theorem 3 (on (in)dependence of supercharges). Consider two non-trivial intertwining
operators q±i , i = 1, 2 with transposition symmetry q+

i = (q−i )t which in general may have complex
coefficients and let us normalize them in accordance to (1). Then the stripped-off intertwining
operators q̃±i coincide if and only if the symmetry operator made of q±i vanishes, q+

1 q−2 −q+
2 q−1 = 0

(or equivalently q−1 q+
2 − q−2 q+

1 = 0).

With the help of this Theorem one can show the following:
a) any symmetric (self-transposed) symmetry operator B± = (B±)t, B±h± = h±B± is

a polynomial of the Hamiltonian h±;
b) any two antisymmetric symmetry operators e±i = −(e±i )t, e±i h± = h±e±i , i = 1, 2 are

dependent, i.e. being stripped off coincide;
c) the maximal number of independent intertwining operators is two.
Using the fact that maximal number of independent intertwining operators is two, one can

show the next.
1. In the case when any two intertwining operators are dependent, every intertwining opera-

tor q+ can be represented in the form

q+ = αq(h+)p+,

where αq(y) is polynomial and p+ is normalized intertwining operator of minimal order. It is
evident that p+ is unique and real.

2. In the case when there are two independent intertwining operators, every intertwining
operator q+ can be represented in the form

q+ = αq(h+)p+ + βq(h+)k+,
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where αq(y) and βq(y) are polynomials, p+ is normalized intertwining operator of minimal order
and k+ is independent of p+ normalized intertwining operator of minimal order. It is evident
that p+ is unique and real and that k+ can be chosen with real coefficients. It can be shown
that sum of orders of p+ and k+ is odd.

Thus the set of p+ and k+ (or only p+ in the case 1) form an optimal basis of intertwining
operators. As all q− = (q+)t the same results are translated to the set of p− = (p+)t and
k− = (k+)t.

7 Example: N = 2, N1 = 1

Let us examine the algebraic structure of the simplest non-linear SUSY with two supercharges K
of the 2nd order and P of the 1st order. The supersymmetries generated by K, K̄ and P , P̄
with components

k±
2 ≡ ∂2 ∓ 2f(x)∂ + b̃(x)∓ f ′(x), p±1 ≡ ∓∂ + χ(x)

prescribe that

V1,2 = χ2 ∓ χ′ = ∓2f ′ + f2 +
f ′′

2f
−

(
f ′

2f

)2

− d

4f2
− a, b̃ = f2 − f ′′

2f
+

(
f ′

2f

)2

+
d

4f2
,

where χ, f are real functions and a, d are real constants. The related superalgebra closure
for K, K̄ and P , P̄ takes the form,

{K, K†} = (H + a)2 + d, {P, P †} = H,

the latter one clarifies the role of constants a, d.
The compatibility of two supersymmetries is achieved on solutions of the following equations

χ = 2f + χ0, f2 +
f ′′

2f
−

(
f ′

2f

)2

− d

4f2
− a = χ2 = (2f + χ0)2, (8)

where χ0 is an arbitrary real constant. The latter one represents a nonlinear second-order
differential equation which solutions are parameterized by two integration constants. Therefore
as it was advertised the existence of two SUSY constrains substantially the class of potentials
for which they may hold.

Let us use the freedom to redefine the higher-order supercharge k±
2 → k±

2 + χ0p
±
1 for elimi-

nating the constant χ0 in (8). After this simplification the equation (8) is integrated into the
following, first-order one,

χ = 2f, (f ′)2 = 4f4 + 4af2 + 4G0f − d ≡ Φ4(f),

where G0 is a real constant.
The solutions of this equation are elliptic functions which can be easily found in the implicit

form, ∫ f(x)

f0

df√
Φ4(f)

= ±(x− x0),

where the lower limit of integration f0 and x0 are real constants.
It can be shown that they may be nonsingular in three situations.
a) The polynomial Φ4(f) has four different real roots f1 < f2 < f3 < f4 and f0 is chosen

between f2 and f3. The corresponding potentials are periodic. This case will not be examined
here.
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b) Φ4(f) has three different real roots and the double root β/2 is either the maximal one or
a minimal one,

Φ4(f) = 4
(

f − β

2

)2
[(

f +
β

2

)2

− (β2 − ε)

]
, 0 < ε < β2. (9)

Then there exists a relation between constants a, d, G0 in terms of parameters β, ε,

a = ε− 3β2

2
< 0, G0 = β(β2 − ε), d = β2

(
3β2

4
− ε

)
. (10)

Besides, the constant f0 is taken between the double root and a nearest simple root.
c) Φ4(f) has two different real double roots which correspond in (9), (10) to G0 = 0, β2 =

ε > 0, a = −β2/2, d = −β4/4. The constant f0 is taken between the roots.
The corresponding potentials V1,2 are well known and in the cases b) and c) are reflectionless,

with one bound state at the energy Eb = (β2 − ε) and with the continuum spectrum starting
from Ec = β2. In particular, in the case b) the potentials coincide in their form and differ only
by shift in the coordinate (about the latter phenomenon see [6]),

V1,2 = β2 − 2ε

ch2
(√

ε(x− x
(1,2)
0 )

) , x(1,2) = x0 ± 1
4
√

ε
ln

β −√ε

β +
√

ε
,

and in the case c) one of the potentials can be chosen constant,

V1 = β2, V2 = β2

(
1− 2

ch2 (β(x− x0))

)
.

For these potentials one can illustrate all the relations of extended SUSY algebra. Thus, in
particular, the polynomial symmetry operator B(H) turns out to be constant, B(H) = G0, the
second symmetry operator reads,

E(H) = i

[
I ∂3 −

(
aI +

3
2
V (x)

)
∂ − 3

4
V ′(x)

]

and, finally, E2(H) takes the form

E2(H) ≡ Pe(H) = H
[
(H + a)2 + d

]−G2
0 ≡ (H − Eb)2(H − Ec).

Hence, in considered case both roots of Pe(E) characterize spectrum of H: one of them (Eb)
characterizes the energy of a bound state and another (Ec) characterizes the energy of a state
in the bottom of continuum spectrum.

8 More about symmetry operators

Let us suppose that:
a) the Hamiltonian h0 commutes with an antisymmetric real operator R0 of order 2n + 1

which cannot be stripped off;
b) h0 has n bound states with wave functions Ψl and energies El, l = 0, . . . , n − 1, where

El+1 > El, l = 0, . . . , n− 2.
Then one can show that:
a) the (normalized) symmetry operator R0 can be factorized in the form,

R0 = rt
0 · · · rt

n−1 ∂ rn−1 · · · r0, rl ≡ ∂ + χl, (11)
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with non-singular real superpotentials χl such that

rl · · · r0Ψl = 0, l = 0, . . . , n− 1;

b) the ladder (dressing chain) relations hold,

hl+1rl = rlhl, l = 0, . . . , n− 1,

hl ≡ rl−1r
t
l−1 + El−1 = rt

lrl + El, l = 1, . . . , n− 1,

h0 = rt
0r0 + E0, hn = rn−1r

t
n−1 + En−1;

c) the antisymmetric symmetry operators arise for each intermediate Hamiltonian,

Rl = rt
l · · · rt

n−1 ∂ rn−1 · · · rl, Rn = ∂, Rlhl = hlRl, l = 0, . . . , n.

Evidently the Hamiltonian hn describes a free particle and therefore the Hamiltonian h0 is
intertwined with the Hamiltonian of free particle.

The described result can be illustrated with the help of the case b) of Section 7, where
each component of the symmetry operator E(H) can be represented in the canonical factorized
form (11),

e± = i

[
∂3 −

(
a +

3
2
V1,2

)
∂ − 3

4
V ′

1,2

]
= −i

(
−∂ − Ψ′

01,2

Ψ01,2

)
∂

(
∂ − Ψ′

01,2

Ψ01,2

)
,

by means of the bound-state wave functions, Ψ01,2 = C
√

V1,2 − β2.
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