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States with fractional charge can appear in quantum systems with topological defects. We
consider an ideal gas of two-dimensional Dirac fermions in the background of a point-like
magnetic vortex with arbitrary flux and find that this system acquires fractional elec-
tric charge at finite temperature. The functional dependence of the thermal average and
quadratic fluctuation of the charge on the temperature, the vortex flux, and the continuous
parameter of the boundary condition at the location of the vortex defect is determined.

1 Introduction

Spontaneous breakdown of continuous symmetries can give rise to topological defects (tex-
ture solitons) with rather interesting properties. A topological defect in three-dimensional
space, which is characterized by the nontrivial second homotopy group, is known as a mag-
netic monopole [1, 2], see also genuine Ref. [3]. Vacuum fluctuations of quantized Dirac fields
result in the monopole becoming a CP symmetry violating dyon, i.e. acquiring nonzero (and
fractional) electric charge [4–6]. More recently the effect of thermal fluctuations of quantized
Dirac fields in the presence of the monopole has been considered, yielding the temperature
dependence of the induced charge [7, 8].

A topological defect in two-dimensional space, which is characterized by the nontrivial first
homotopy group, is a cross-section of the Abrikosov–Nielsen–Olesen magnetic vortex [9, 10].
The vortex defect is described in terms of a spin-0 field which condenses and a spin-1 field
corresponding to the spontaneously broken gauge group; the former is coupled to the latter in
the minimal way with constant econd. Single-valuedness of the condensate field and finiteness of
the vortex energy imply that the vortex flux is related to econd:

Φ =
1
2π

∮
dx V (x) =

1
econd

, (1)

where V (x) is the vector potential of the spin-1 field, and the integral is over a path enclosing
once the vortex tube. The quantized fermion field is coupled minimally to the spin-1 field
with constant e – the elementary charge; thus, quantum effects depend on the value of eΦ. The
case of econd = 2e (eΦ = 1/2) is realized in ordinary Bardeen–Cooper–Schrieffer superconductors
where the Cooper pair field condenses and, in addition, there are normal electron (pair-breaking)
excitations. It remains still to be elucidated, whether other values of eΦ are realized in nature,
although there are claims that vortices with fractional eΦ �= 1/2 exist in chiral superfluids and
chiral and two-gap superconductors [11].
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The aim of the present paper is to consider the effect of thermal fluctuations of quantized Dirac
fields1 in the presence of the vortex defect with arbitrary value of eΦ, which results in the vortex
acquiring fractional electric charge; the zero-temperature effect was considered earlier [13–15].
Since continuous symmetry is not spontaneously broken at the core of the defect, it seems
reasonable to exclude the region of the defect and to impose a boundary condition for quantized
fields at the edge of this region. Thus, quantum effects depend both on eΦ and real continuous
quantity Θ which parameterizes the most general varieties of boundary conditions (for more
details see next Section). This setup should not be confused with the setup when fermions are
quantized in the presence of an extensive magnetic field with finite flux and the region of the
nonvanishing field strength is not excluded. The induced charge in the latter case was considered
in Refs. [16, 17] (zero temperature) and Ref. [18] (nonzero temperature), and we shall compare
the results of both setups in Section 3.

The operator of the second-quantized fermion field in a static background can be presented
in the form

Ψ(x, t) =
∑∫

E>0

e−iEt〈x|E, λ〉aEλ +
∑∫

E<0

e−iEt〈x|E, λ〉b+
Eλ, (2)

where a+
Eλ and aEλ (b+

Eλ and bEλ) are the fermion (antifermion) creation and destruction opera-
tors satisfying anticommutation relations,

[
aEλ, a+

E′λ′
]
+

=
[
bEλ, b+

E′λ′
]
+

= 〈E, λ|E′, λ′〉, (3)

and 〈x|E, λ〉 is the solution to the stationary Dirac equation,

H〈x|E, λ〉 = E〈x|E, λ〉, (4)

H is the Dirac Hamiltonian, E is the energy and λ is the set of other parameters (quantum

numbers) specifying a state; symbol
∑∫

means the summation over discrete and the integration

(with a certain measure) over continuous values of all quantum numbers. Conventionally, the
operators of dynamical invariants are defined as bilinears of the fermion field operators, and,
thus, comprizing: the energy operator (temporal component of the energy-momentum vector),

P̂ 0 =
i

4

∫
ddx

([
Ψ+, ∂tΨ

]
− − [

∂tΨ+, Ψ
]
−
)

, (5)

and the fermion number operator,

N̂ =
1
2

∫
ddx

[
Ψ+, Ψ

]
− , (6)

where d is the space dimension. Operators (5) and (6) commute and are thus diagonal in the
fermion and antifermion creation and destruction operators.

The thermal average of the fermion number operator over the canonical ensemble is defined
as (see, e.g., Ref. [19])

〈N̂〉 =
Sp N̂ exp(−βP̂ 0)
Sp exp(−βP̂ 0)

, β = (kBT )−1, (7)

1This may be relevant for various particle physics models with applications ranging from early Universe cosmol-
ogy to hot nuclear matter phenomenology, and even for condensed matter models, because effectively quasirela-
tivistic fermions arise, in particular, in d-wave type II superconductors (see, e.g., Ref. [12]).
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where T is the equilibrium temperature, kB is the Boltzmann constant, and Sp is the trace or
the sum over the expectation values in the Fock state basis created by operators in equation (3).
Appropriately, the electric charge of the quantum fermionic system in thermal equilibrium is
given by expression

Q(T ) ≡ e〈N̂〉 = −e

2

∫ ∞

−∞
dE τ(E) tanh

(
1
2
βE

)
, (8)

where the last equality is obtained by transforming the right-hand side of equation (7) into
an integral over the spectrum of the Dirac Hamiltonian (see, e.g., Ref. [18]), and the spectral
density of the Dirac Hamiltonian (or density of states) is

τ(E) =
1
π

Im Tr
1

H − E − i0
, (9)

where Tr is the trace of an integro-differential operator in functional space:

Tr U =
∫

ddx tr 〈x|U |x〉;

tr denotes the trace over spinor indices only; note that the functional trace should be regularized
and renormalized by subtraction, if necessary.

Similarly, one gets expression for the quadratic fluctuation of the electric charge:

∆2
Q(T ) ≡ e2

[
〈N̂2〉 − (〈N̂〉)2

]
=

e2

4

∫ ∞

−∞
dE

τ(E)
cosh2

(
1
2βE

) . (10)

Evidently, if the quadratic fluctuation becomes nonvanishing, then the corresponding dynamical
invariant ceases to be a sharp quantum observable.

In the present paper we shall find electric charge (8) and its fluctuation (10) in the d = 2
quantum fermionic system in the background of a single static topological defect which is a two-
dimensional cross section of the magnetic vortex.

2 Thermal average and fluctuation of the charge

Taking into account equation (9), one can get the following contour integral representation for
induced charge (8) and its quadratic fluctuation (10):

Q(T ) = −e

2

∫
C

dω

2πi
tanh

(
1
2
βω

)
Tr (H − ω)−1, (11)

and

∆2
Q(T ) =

e2

4

∫
C

dω

2πi
sech2

(
1
2
βω

)
Tr (H − ω)−1, (12)

where C is the contour (−∞ + i0, +∞ + i0) and (+∞− i0,−∞− i0) in the complex ω-plane.
Thus we obtain:

Q(T ) = −e

2
sgn (m)

{
1
2

[
sgn

(
1 + A−1

) − sgn (1 + A)
]
tanh

(
1
2
β|EBS |

)

+
2 sin(Fπ)

π

∫ ∞

0

du

u
√

u + 1
tanh

(
1
2
β|m|√u + 1

)

× FAuF − (1 − F )A−1u1−F − u cos(Fπ) +
(
F − 1

2

)
u

(
AuF + A−1u1−F

)
[AuF − A−1u1−F + 2 cos(Fπ)]2 + 4(u + 1) sin2(Fπ)

}
, (13)
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and

∆2
Q(T ) =

e2

4

{
1
2
[1 − sgn (A)] sech2

(
1
2
β|EBS |

)
− F (1 − F ) sech2

(
1
2
β|m|

)

+
2 sin(Fπ)

π

∫ ∞

0

du

u
sech2

(
1
2
β|m|√u + 1

)

× FAuF + (1 − F )A−1u1−F − (2F − 1)u cos(Fπ)

[AuF − A−1u1−F + 2 cos(Fπ)]2 + 4(u + 1) sin2(Fπ)

}
, (14)

where

F = eΦ − [[eΦ]], 0 ≤ F < 1, (15)

is the fractional part of eΦ,

A = 21−2F Γ(1 − F )
Γ(F )

tan
(

s
Θ
2

+
π

4

)
, (16)

and Θ is the continuous real parameter of the boundary condition at the location of the vortex
defect; recall that bound state energy EBS is determined implicitly by [15]

(
1 + m−1EBS

)1−F

(1 − m−1EBS)F
= −A. (17)

In the cases of A = 0 and A−1 = 0 expressions for the charge and its fluctuation simplify:

Q(T ) = −e

2

(
F − 1

2
± 1

2

)
tanh

(
1
2
βm

)
, Θ = ±s

π

2
(mod 2π), (18)

and

∆2
Q(T ) =

e2

4

(
F − 1

2
± 1

2

)2

sech2

(
1
2
β|m|

)
, Θ = ±s

π

2
(mod 2π); (19)

note that equation (18) at Θ = sπ
2 (mod 2π) was obtained in Ref. [7].

In the limit T → 0 (β → ∞) the charge tends to finite value (see Ref. [15]):

Q(0) =




e

2
sgn (m)(1 − F ), −1 < A < ∞

−e

2
sgn (m)F , A−1 = −1, A−1 = 0

−e

2
sgn (m)(1 + F ), −∞ < A < −1




, 0 < F <
1
2
,

−e

2
sgn (m)F , −1 < A−1 < ∞

e

2
sgn (m)(1 − F ), A = −1, A = 0

e

2
sgn (m)(2 − F ), −∞ < A−1 < −1




,
1
2

< F < 1,

(20)

Q(0) =


− e

π
s sgn (m) arctan

(
tan

Θ
2

)
, Θ �= π (mod 2π)

0, Θ = π (mod 2π)


 , F =

1
2
, (21)
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whereas the fluctuation tends exponentially to zero for almost all values of Θ with the exception
of one corresponding to the zero bound state energy, EBS = 0 (A = −1):

∆2
Q(0) =




0, A �= −1,

e2

4
, A = −1.

(22)

In the high-temperature limit the charge tends to zero:

Q(T → ∞) =




e

2
sgn (m)

sin(Fπ)
π

Γ(1 − F )
Γ(1 + F )

tan
(

s
Θ
2

+
π

4

)( |m|
kBT

)1−2F

, 0 < F <
1
2
,

−e

8
sm

kBT
sin Θ, F =

1
2
,

−e

2
sgn (m)

sin(Fπ)
π

Γ(F )
Γ(2 − F )

cot
(

s
Θ
2

+
π

4

) ( |m|
kBT

)2F−1

,
1
2

< F < 1.

(23)

whereas the fluctuation tends to finite value:

lim
T→∞

∆2
Q(T ) =




e2

4
(1 − F )2, Θ �= s

π

2
(mod 2π)

e2

4
F 2, Θ = s

π

2
(mod 2π)


 , 0 < F ≤ 1

2
,

e2

4
F 2, Θ �= −s

π

2
(mod 2π)

e2

4
(1 − F )2, Θ = −s

π

2
(mod 2π)


 ,

1
2
≤ F < 1.

(24)

At half-integer values of eΦ one has

A|F= 1
2

= tan
(

s
Θ
2

+
π

4

)
, (25)

and the charge and its fluctuation take the form

Q(T )|F= 1
2

= −e

4
s

{
[1 − sgn (cos Θ)] tanh

(
1
2
βm sin Θ

)

+
sin 2Θ

2π

∫ ∞

1

dv√
v(v − 1)

tanh
(

1
2βm

√
v
)

v − sin2 Θ

}
, (26)

and

∆2
Q(T )

∣∣∣
F= 1

2

=
e2

8

{
[1 − sgn (cos Θ)] sech2

(
1
2
β|m sin Θ|

)
− 1

2
sech2

(
1
2
β|m|

)

+
cos Θ

π

∫ ∞

1

dv√
v − 1

sech2
(

1
2β|m|√v

)
v − sin2 Θ

}
. (27)

An alternative representation for the charge and its fluctuation is obtained by deforming
contour C to encircle poles of the tanh

(
1
2βω

)
and sech2

(
1
2βω

)
functions, which occur along the

imaginary axis at the Matsubara modes
(
ωn = (2n + 1) iπ

β

)
:

Q(T ) = −e sgn (m)

{
1
2

(
F − 1

2

)
tanh

(
π

2ξ

)
(28)
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+
ξ

π

∑
n∈Z

n≥0

2(2F − 1)(2n + 1)2ξ2 + A[1 + (2n + 1)2ξ2]F − A−1[1 + (2n + 1)2ξ2]1−F

[1 + (2n + 1)2ξ2]{A[1 + (2n + 1)2ξ2]F + 2 + A−1[1 + (2n + 1)2ξ2]1−F }

}
,

and

∆2
Q(T ) =

e2

8
[1 − 2F (1 − F )] sech2

(
π

2ξ

)

+e2 ξ2

π2

∑
n∈Z

n≥0

1
[1 + (2n + 1)2ξ2]2{A[1 + (2n + 1)2ξ2]F + 2 + A−1[1 + (2n + 1)2ξ2]1−F }

×
{

(2F − 1)[(2n + 1)2ξ2 − 1]{A[1 + (2n + 1)2ξ2]F − A−1[1 + (2n + 1)2ξ2]1−F } (29)

+2{1 − [3 − 4F (1 − F )](2n + 1)2ξ2} − 4(2n + 1)2ξ2

× (2F− 1){A[1+ (2n + 1)2ξ2]F − A−1[1+ (2n + 1)2ξ2]1−F } − 1+ (2F − 1)2(2n + 1)2ξ2

A[1 + (2n + 1)2ξ2]F + 2 + A−1[1+ (2n + 1)2ξ2]1−F

}
,

where ξ = π/(β|m|).

3 Discussion

In the present paper we consider an ideal gas of two-dimensional relativistic massive electrons
in the background of a static point-like magnetic vortex. This system at thermal equilibrium is
found to acquire electric charge: its average Q(T ) is given by equation (13), and its quadratic fluc-
tuation ∆2

Q(T ) is given by equation (14). The most general boundary conditions (parametrized
by the self-adjoint extension parameter Θ) at the location of the vortex are employed, and ar-
bitrary values of the vortex flux Φ are permitted; our results are periodic in Θ with period 2π
at fixed Φ and periodic in Φ with period e−1 at fixed Θ (e is the electron charge). Note that
equations (13) and (14) can be regarded as the Sommerfeld–Watson transforms of the infinite
sum representation, equations (28) and (29). Note also that the charge is odd and its fluctuation
is even under transition to the inequivalent representation of the Clifford algebra (m → −m).

Equation (13) can rewritten in the form

Q(T ) = Q(0) + Q̃(T ), (30)

where Q(0) is given by equations (20)–(21) [15], and

Q̃(T ) =
e

2
sgn (m)

{
sgn

(
1 + A−1

) − sgn (1 + A)
exp (β|EBS |) + 1

+
2F − 1

exp(β|m|) + 1
(31)

+
β|m|
2π

∫ ∞

1
dw sech2

(
1
2
β|m|w

)
arctan

[
A(w2 − 1)F − A−1(w2 − 1)1−F + 2 cos(Fπ)

2w sin(Fπ)

] }
.

Our result should be compared with the result of Ref. [18]

Q(T ) = −e2

2
sΦ tanh

(
1
2
βm

)
, (32)

where Φ is the flux of a magnetic field with an extensive support, and it is implied that the
region of the support is not excluded. Thus, result (32) describes the direct effect of the field
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strength, whereas our result describes the indirect, through the vector potential, effect of the
field strength from the excluded region. In contrast to equation (32), our expressions for Q(T )
and ∆2

Q(T ) are periodic in the value of the flux, vanishing at integer values of eΦ, and this can
be regarded as a manifestation of the Bohm–Aharonov effect [20] in quantum field theory at
nonzero temperature.

The nonvanishing of the charge quadratic fluctuation signifies that the charge of the system
is not a sharp quantum observable and has to be understood as a thermal expectation value
only. In the high-temperature limit the average charge tends to zero (23) and the fluctuation
tends to finite value (24). In the zero-temperature limit quantities ∆2

Q(T ) and Q̃(T ) tend ex-
ponentially to zero and the charge becomes a sharp quantum observable with finite value Q(0)
(20)–(21). However, the last statement is true for almost all values of Θ with the exception of
one corresponding to the zero bound state energy, EBS = 0 (A = −1), since in this case the
zero-temperature fluctuation is nonzero, see equation (22).

At half-integer values of eΦ the average charge takes form of equation (26) which coincides
(after substituting s for 2eg, where g is the magnetic monopole charge, 2eg = n is the Dirac
quantization condition) with the expression for the thermally induced charge in the monopole
background in three-dimensional space [7, 8]. It should be emphasized that at non-half-integer
values of eΦ the behavior of the charge as a function of Θ differs drastically from the one at
half-integer eΦ.

In the F �= 1
2 case the charge at zero temperature is given by a step function with two jumps.

As temperature increases, the jump corresponding to the zero bound state energy (A = −1) is
smoothed out, while another jump is persisting. The charge at A = −1 is not a sharp quantum
observable even at zero temperature, which is explicated by the nonvanishing of the fluctuation
in this case. As temperature departs from zero, the fluctuation develops a maximum at A = −1
and a minimum close to the position of the persisting jump of the charge, but out of the region
where bound state exists. With the increase of temperature the maximum is widening and
disappearing, while the minimum is narrowing with its position approaching the position of the
charge jump and its width tending to zero in the high-temperature limit.

In the F = 1
2 case the charge at zero temperature is linear in Θ with one jump at A = −1

(Θ = sπ (mod 2π)) where the charge is not a sharp quantum observable. As temperature
increases, this jump is smoothed out. Appropriately, the fluctuation is symmetric with respect
to the position of this jump, and a maximum of the fluctuation is smoothed out with the increase
of temperature.

In conclusion we note that the system considered can acquire, in addition to the charge, also
other quantum numbers. In the case of zero temperature this issue is comprehensively elucidated
in Refs. [15, 21, 22], and an appropriate generalization to the case of nonzero temperature will
be studied elsewhere.
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