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Making a global phase symmetry local usually involves the introduction of a rank 1, vector
field in the definition of the covariant derivative. In this paper we show how a symmetry can
be gauged using fields of various ranks in the definition of the covariant derivative. Some of
these higher rank gauge theories share similarities with general relativity in that the covariant
derivative has terms which are derivatives of some more fundamental quantity. Most of the
Lagrangians that we find under these higher rank gauge theories lead to nonrenormalizable
quantum theories which is also similar to general relativity.

1 Standard gauge procedure with a rank 1 field

Turning global symmetries into local ones (i.e. gauging a symmetry) is an important feature
of most modern field theories. For example, Maxwell’s theory can be derived by gauging an
Abelian U(1) phase symmetry. In this section the standard gauge procedure is summarized
using a complex scalar matter field ϕ. Throughout the paper the complex scalar field ϕ will
be used to illustrate the higher rank gauge procedures. The same procedure applies equally to
other matter field (e.g. a spinor or vector fields). The Lagrange density for ϕ is

Lscalar = (∂µϕ)∗(∂µϕ) + · · · . (1)

The ellipses leave off non-derivative terms (e.g. mass m2ϕ∗ϕ or self-interaction terms λ(ϕ∗ϕ)2).
This Lagrange density satisfies the global phase symmetry

ϕ(x) → e−igΛϕ(x), ϕ∗(x) → eigΛϕ∗(x), (2)

where g is the coupling and Λ is a constant phase. This phase symmetry can be made local
(gΛ → gΛ(x)) by replacing the ordinary derivative with the covariant derivative

∂µ → D[1]
µ ≡ ∂µ − igσµνA

ν . (3)

Throughout the paper the bracketed superscript will indicate the rank of the gauge field. We
have introduced a rank-2 operator σµν since this will allow us to give the general gauging
procedure for gauge fields of other ranks. The newly introduced four-vector gauge field Aµ is
required to transform as

Aµ → Aµ − Γµ. (4)

In order for the local symmetry version of (2) to be valid Γµ, σµν and Λ(x) must satisfy

σµνΓν − ∂µΛ = 0. (5)

The Maxwell theory case corresponds to choosing

σµν = ηµν , Γµ = ∂µΛ. (6)
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However, it is also possible to make the following choice

σµν = ∂µ∂ν , Λ = ∂µΓµ + f(x), (7)

where f(x) is a divergenceless function, ∂µf(x) = 0. An interesting difference between the two
options is that in (6) Γµ is defined in terms of the local phase factor Λ(x), while for (7) Λ(x) is
defined in terms of Γµ.

Next one constructs a “kinetic” energy term for Aµ by introducing the field strength tensor

F [1]
µν = A1∂µAν + B1∂νAµ. (8)

This is invariant under (4), (6) if A1 +B1 = 0, that is to say, if F
[1]
µν is anti-symmetric between µ

and ν. The reason for writing F
[1]
µν as in (8) is that it makes the connection with the field strength

tensors of the higher rank cases more transparent. F
[1]
µν is invariant in the case of (6), however

for the case of (7) it is not since Γµ is arbitrary. Because of this arbitrariness one can always
make Aµ → 0 and F

[1]
µν = 0 by taking Γµ = Aµ. If we take case (6) in the construction of F

[1]
µν

the following Lagrange density

L′
scalar = (D[1]

µ ϕ)∗(D[1]µϕ) − 1
4F [1]

µν F [1]µν + · · · , (9)

is invariant under the combined transformations of equations (4), (6) and the local version of
equation (2).

The gravitational interaction follows a similar, although not exactly identical path. One can
take the global space-time symmetries of special relativity and make them local [1] to arrive
at a theory of the gravitational interaction. Here one again replaces ordinary derivatives with
covariant derivatives. For example, the covariant derivative of a vector field Vν is

∂µVν → ∂µVν + Γα
µνVα with Γα

µν = 1
2gασ(∂νgσµ + ∂µgσν − ∂σgµν) (10)

Unlike the gauge field in equation (3), Γα
µν is not fundamental, but is defined in terms of the

first derivatives of the metric tensor gµν .

2 Gauge procedure with a rank 0 field

Here we present the generalized gauge procedure for a rank 0 field. We begin with the Lagrange
density of a complex scalar matter field of equation (1) and a local phase transformation (i.e. (2)
with Λ → Λ(x).) The space-time dependence of Λ(x) means that the derivative of ϕ and ϕ∗ are
no longer invariant under (2), but become ∂µϕ → ∂µϕ−ig(∂µΛ)ϕ and ∂µϕ∗ → ∂µϕ∗+ig(∂µΛ)ϕ∗.
As in the case of the gauging procedure with a vector field we want to find a generalization of
the derivative operator ∂µ, which is invariant under the local version of (2). We define this
generalized rank 0 derivative operator as

D[0]
µ ≡ ∂µ − ig∂µΦ. (11)

Φ is real, scalar gauge field which is required to undergo the transformation

Φ(x) → Φ(x) − Λ(x). (12)

These transformations of the scalar field Φ are similar to the toy model considered in [4]. With
replacement of the ordinary derivative in equation (1) with D

[0]
µ the Lagrangian of equation (1)

becomes invariant under the local versions of (2), (12). As in the non-standard rank 1 case
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of (7) there is no kinetic term, since from the transformation of (12) it is always possible to take
Φ = 0 by choosing Λ = Φ. Thus the Lagrangian

Lscalar = (D[0]
µ ϕ)∗(Dµ[0]ϕ) = (∂µϕ∗ + igϕ∗∂µΦ)(∂µϕ − igϕ∂µΦ) (13)

is invariant under (2), (12). This Lagrangian has no kinetic term for Φ. In contrast to the
standard covariant derivative ∂µ − ieAµ, the covariant derivative of (11) involves the derivative
of the fundamental gauge field Φ. This can be compared to the covariant derivative of general
relativity which involves derivatives of a more fundamental quantity (the metric tensor gµν).

One can apply this rank 0 procedure starting with matter fields other than a complex scalar
field ϕ. In [5] this was done starting with a vector field, and this could be interpreted as a gauging
of the electromagnetic dual symmetry [6]. In [7] a related localizing of the Schwarz–Sen [8] dual
symmetry was given. The idea of having a scalar gauge field has also been considered by other
authors. In [9] a unified version of the Standard Model was constructed via the introduction of
a generalized covariant derivative which involved both vector and scalar gauge fields.

3 Classification of Gauge procedures

At this stage we have encountered three different categories of gauging procedures:
• Trivial Case: This is illustrated by the rank 0 case of (12). The gauge field transformation

of (12) allows one to transform away the gauge field by taking Φ = Λ. This case can be seen as
a special case of the standard gauge procedure with the association Aµ ∝ ∂µΦ. This is a pure
gauge case since for such an Aµ one finds F

[1]
µν = 0. For this trivial case the phase factor and

gauge transformation function are related without the need of a derivative operator.
• Semi-Trivial Case: This is illustrated by the rank 1 case of (7). Here the transformation

function of the gauge field Γµ is arbitrarily given. By choosing Aµ = Γµ it is always possible to
transform away the gauge field, making it non-dynamical. Both this case and the trivial case
are marked by having covariant derivatives of the form

∂µ − ig∂µ(Scalar), (14)

where Scalar is some scalar quantity. In contrast to the trivial case in the semi-trivial case the
phase factor and gauge transformation function are related using derivative operator(s).

• Non-Trivial Case: This is illustrated by the rank 1 Maxwell Theory case of (6). In
contrast to the previous semi-trivial case the phase factor Λ is arbitrary while the gauge trans-
formation function Γµ takes a restricted form in terms of the phase function. The gauge field is
dynamical and the covariant derivative does not take the form of (14).

In the following sections we show that for the abstract phase symmetries it is possible to
formulate a gauge procedure with fields of various ranks as gauge fields. The procedure will
employ generalizations of (3), (4) of the form

Dµ = ∂µ − igσµ1µ2···µn+1A
µ1µ2···µn , Aµ1µ2···µn → Aµ1µ2···µn − Γµ1µ2···µn . (15)

As with general relativity the covariant derivative of this generalized gauge procedure will have
connections, σµ1µ2···µn+1A

µ1µ2···µn , which are defined in terms of the derivative of a more funda-
mental object. Many of the theories obtained from this generalized gauging will have dimen-
sionful coupling constants and lead to nonrenormalizable theories as is also the case with general
relativity. Here we do not attempt to give a phenomenological application of the field theories
that result from the generalized gauging procedure. We simply demonstrate an alternative,
general way in which a global phase symmetry can be made local. This may give some insight
into a connection between the way in which one usually gauges abstract phase symmetries via
a fundamental vector field and the way in which space-time symmetries are made local. There
has been previous work on higher rank (i.e. higher spin) gauge fields [2, 3]. The differences
between the present work and [2, 3] are discussed in the concluding section.
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4 Gauge procedure with a rank 2 field

In this section we will gauge the local version of the symmetry of equation (2) for the Lagrange
density in equation (1) using a rank 2 gauge field. We define a covariant derivative as

D[2]
µ ≡ ∂µ − igσµνρA

νρ, (16)

where we have introduced a rank 3 operator σµνρ, and a rank 2 gauge field Aνρ. Here we consider
the case when the gauge field indices are symmetric. The antisymmetric case will be considered
in a longer work [10].

For symmetric Aνρ (Aνρ = Aρν) the operator σµνρ has the partial symmetry σµνρ = σµρν .
Constructing σµνρ from ηµν and ∂µ, we can write a general form as

σµνρ = 1
2a2(ηµν∂ρ + ηρµ∂ν) + b2ηνρ∂µ + c2∂µ∂ν∂ρ, (17)

where a2, b2, c2 are constants with the subscript indicating the rank of Aµν . The last term
in (17) has a greater symmetry (it is symmetric in all three indices) than required. In conjunction
with (2) we require that Aµν transforms as

Aµν → Aµν − Γµν . (18)

If the rank 2 function Γµν and Λ satisfy

σµνρΓνρ − ∂µΛ = 0, (19)

then the Lagrange density Lscalar = (D[2]
µ ϕ)∗(D[2] µϕ) + · · · will be invariant under the com-

bined (2), (18). We will consider three special cases.
1. [a2 = 1, b2 = c2 = 0]. The covariant derivative and the condition in equation (19)

become

D[2]
µ = ∂µ − ig∂νA

ν
µ, ∂νΓν

µ − ∂µΛ = 0. (20)

The symmetry of Aµν was used in finding D
[2]
µ . A general solution to the last equation in (20) is

Γµν = ηµνΛ + hµν , (21)

where it is required that ∂νhµν = 0. An example of a solution is

Γµν = ∂µ∂νf(x) + ηµνg(x), Λ = ∂ν∂
νf(x) + g(x) + h(x), (22)

where f(x), g(x) and h(x) are arbitrary scalar functions. The function h(x) must satisfy
∂µh(x) = 0, which corresponds to the choice hµν = ∂µ∂νf(x) − ηµν(∂ρ∂

ρf(x) + h(x)) in (21).
The explicit gauge field transformation is

Aµν → Aµν − ∂µ∂νf(x) − ηµνg(x). (23)

2. [b2 = 1, a2 = c2 = 0]. The covariant derivative and the condition in equation (19)
become

D[2]
µ = ∂µ − ig∂µAν

ν , ∂µΓν
ν − ∂µΛ = 0. (24)

The last equation in (24) can be satisfied by taking

Λ = Γν
ν + f(x), (25)
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with ∂µf(x) = 0. The gauge transformation function Γµν , and phase factor Λ are arbitrary, and
are related without a derivative operator so this is a trivial case. Since Γµν is arbitrary it should
always be possible to transform the gauge field away via Aµν → Aµν − Γµν with Aµν = Γµν .

3. [c2 = 1, a2 = b2 = 0]. The covariant derivative and the condition in equation (19)
become

D[2]
µ = ∂µ − ig∂µ∂ν∂ρA

νρ, ∂µ∂ν∂ρΓνρ − ∂µΛ = 0. (26)

The last equation above can be satisfied by taking

Λ = ∂ν∂ρΓνρ + f(x), (27)

with ∂µf(x) = 0. This is a semi-trivial case since the gauge function is arbitrary, but the
relationship between it and the phase factor involves the derivative operator.

For cases 2 and 3 the rank 2 gauge field is arbitrary, and any form for Γµν works. For
case 1 the specific form given in (22) is necessary. This difference can be traced to the different
relationships between Γµν and Λ given in the second equations in (20), (24), (26). Equations (24)
and (26) involve the same index on the derivative, while for equation (20) the indices on the
derivative operator are different. This is connected with the fact that cases 2 and 3 are trivial and
semi-trivial as previously discussed, and have covariant derivatives of the form of equation (14).

Next we want to add a kinetic term involving Aµν alone. Cases 2 and 3 are trivial and
semi-trivial, so that Γµν has a completely arbitrary form. In these cases Aµν is not dynamical
since it is possible to transform it away by taking Aµν = Γµν . Thus we only consider case 1 in
constructing of an invariant field strength tensor. Also we will work with the special example
given in (22) with g(x) = 0. Under these conditions the following rank 3 object

F [2]
µνρ = A2∂µAνρ + B2∂νAµρ + C2∂ρAµν , (28)

is invariant under the gauge field transformation if the constants obey A2 +B2 +C2 = 0. F
[2]
µνρ is

neither symmetric nor antisymmetric. Its defining feature is the permutation of the indices which
generalizes the form of the rank 2 field strength tensor given in (8). The following Lagrangian
is invariant under the local phase and gauge field transformations

Lscalar = (D[2]
µ ϕ)∗(Dµ[2]ϕ) + KF [2]

µνρF
[2]µνρ + · · · , (29)

where K is a constant. The kinetic energy term involving only the gauge field Aµν is more
complex than the rank 1 kinetic term in equation (9).

For all three cases (20), (24) and (26) the coupling g is dimensionful implying that the
Lagrangian in equation (29) is nonrenormalizable. The mass dimension of g can be determined
from equation (16). The derivative operator has mass dimension +1 and in the usual way the
gauge field Aµν is taken to have mass dimension +1. Thus for case 1 and 2 from (20) and (24)
the coupling g has mass dimension −1, while for case 3 from (26) g has mass dimension −3.

5 Gauge procedure with a rank 3 field

In this section we will gauge the local version of the symmetry of equation (2) for the Lagrange
density in equation (1) using a rank 3 gauge field. As n becomes large the number of possible
terms in the definition of σµ1µ2···µn+1 and in the construction of a kinetic term for the gauge field
becomes larger and more complex. We define a covariant derivative as

D[3]
µ ≡ ∂µ − igσµνρτA

νρτ , (30)
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where we have introduced a rank 4 operator σµνρτ , and a rank 3 gauge field Aνρτ . In this paper
we consider only the rank 3 gauge field with complete symmetry in its indices. Antisymmetric
and mixed symmetric cases will be considered in a longer work in preparation [10]. For the
totally symmetric gauge field the operator σµνρτ is symmetric in the last three indices.

Using the operators ηµν and ∂µ we can write a general form for σµνρτ

σµνρτ = 1
3a3(ηµνηρτ + ηµρηντ + ηµτηρν) + 1

3b3(ηµν∂ρ∂τ + ηµρ∂ν∂τ + ηµτ∂ρ∂ν)
+ 1

3c3(ηρν∂µ∂τ + ητρ∂µ∂ν + ηντ∂µ∂ρ) + d3∂µ∂ν∂ρ∂τ , (31)

where a3, b3, c3, d3 are constants with the subscript indicating the rank of Aµντ . The last
term in (5) has a greater index symmetry than required: it is symmetric in all four indices. In
conjunction with the transformation of equation (2) we require that Aµντ transforms as

Aµντ → Aµντ − Γµντ . (32)

If the rank 3 gauge function Γµντ and Λ satisfy

σµνρτΓνρτ − ∂µΛ = 0, (33)

then the Lagrange density Lscalar = (D[3]
µ ϕ)∗(D[3] µϕ)+ · · · will be invariant under the combined

transformation (2), (32). As in the previous section we will consider four special cases.
1. [a3 = 1, b3 = c3 = d3 = 0]. The covariant derivative and the condition in equation (33)

become

D[3]
µ = ∂µ − igAµρ

ρ, Γµρ
ρ − ∂µΛ = 0, (34)

where the symmetry of Aµνρ was used in determining D
[3]
µ . An example of a solution to the last

equation of (34) is

Γµνρ = ∂µ∂ν∂ρf(x)+ 1
6(ηµν∂ρ + ηνρ∂µ + ηρµ∂ν)g(x), Λ = ∂ρ∂

ρf(x) + g(x) + h(x), (35)

where f(x), g(x), h(x) are arbitrary functions with ∂µh(x)=0. Equation (35) appears as a ge-
neralization of the rank 2 example solution of (22). The explicit gauge field transformation is

Aµνρ → Aµνρ − ∂µ∂ν∂ρf(x) − 1
6(ηµν∂ρ + ηνρ∂µ + ηρµ∂ν)g(x). (36)

This gauge field transformation appears as a generalized version of the rank 2 gauge field case
given in (23). This case is closer to the standard vector gauge procedure of (6) than any of the
previous rank 2 cases, since the covariant derivative in (34) only involves the gauge field and not
derivatives of the gauge field.

2. [b3 = 1, a3 = c3 = d3 = 0]. The covariant derivative and the condition in equation (33)
become

D[3]
µ = ∂µ − ig∂ρ∂τAµρτ , ∂ν∂ρΓµνρ − ∂µΛ = 0. (37)

The last equation in (37) can be satisfied by taking the same Γµνρ as in (35), and a phase factor
of the form

Λ = ∂ρ∂
ρ∂τ∂

τf(x) + 1
2∂τ∂

τg(x) + h(x), (38)

where f(x), g(x), h(x) are arbitrary functions with ∂µh(x) = 0. The gauge transformation
of Aµνρ is identical to (36).
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3. [c3 = 1, a3 = b3 = d3 = 0]. The covariant derivative and the condition in equation (33)
become

D[3]
µ = ∂µ − ig∂µ∂τAρ

ρτ , ∂µ∂τΓρ
ρτ − ∂µΛ = 0. (39)

The last equation above can be satisfied by taking

Λ = ∂τΓρ
ρτ + f, (40)

where f is gradient-less. Since the covariant derivative is of the form (14) and the gauge function
and phase factor are related using derivatives this case is characterized as semi-trivial. Lscalar =
(D[3]

µ ϕ)∗(D[3] µϕ) + · · · is invariant under the phase transformation of ϕ(x) and an arbitrary
gauge transformation Aµνρ → Aµνρ − Γµνρ.

4. [d3 = 1, a3 = b3 = c3 = 0]. The covariant derivative and the condition in equation (33)
become

D[3]
µ = ∂µ − ig∂µ∂ν∂ρ∂τA

νρτ , ∂µ∂ν∂ρ∂τΓνρτ − ∂µΛ = 0. (41)

This last equation above can be satisfied by taking

Λ = ∂ν∂ρ∂τΓνρτ + f, (42)

where f is gradient-less. As for the preceding case this is also semi-trivial.
As before, we want to add a kinetic term involving Aµνρ alone. Cases 1 and 2 are both

non-trivial and have the same transformation of Aµνρ given by (36). Thus both cases will have
the same pure gauge invariant field strength tensors. Cases 3 and 4 are both semi-trivial and
have arbitrary forms for the gauge transformation. Thus we only consider cases 1 and 2 in
constructing the field strength tensor. Furthermore, as in the rank 2 fields of the previous
section, we will work with the special case g(x) = 0 in (36) and (38). Thus, the rank 4 object

F [3]
µνρτ = A3∂µAνρτ + B3∂νAρτµ + C3∂ρAτµν + D3∂τAµνρ, (43)

is invariant under (36) and (38) (given g(x) = 0) if the constants obey A3 + B3 + C3 + D3 = 0.
The common feature between this invariant field strength tensor and the rank 1 and 2 cases
of (8) and (28) is the permutation of indices. Thus the following Lagrangian is invariant under
the local phase transformation and the gauge field transformation equation (36).

Lscalar = (D[3]
µ ϕ)∗(Dµ[3]ϕ) + KF [3]

µνρτF
[3]µνρτ + · · · , K = const. (44)

For the symmetric rank 3 gauge field the dimension of the coupling, and therefore whether
the theory is renormalizable or not is different for each of the four cases above. For case 1, there
are no derivative terms which appear in the second term in the covariant derivative in (34).
Taking Aµνρ to have the usual mass dimension of +1, then g is dimensionless. This case may
lead to a renormalizable theory. For cases 2 and 3 two derivatives appear in the second term
of the covariant derivative in (37), (39), which implies that g should have mass dimension −2.
Finally, for case 4 four derivatives appear in the second term of the covariant derivative in (41),
which gives g a mass dimension of −4.

6 Summary and conclusion

Here we summarize the overall structure of the various gauging procedures presented here.
1. Starting from some initial matter field a local version of the phase symmetry in equation (2)

is imposed. A covariant derivative of the form of the first equation in (15) and a rank n gauge
field which transforms like the second equation in (15) are introduced.
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2. The definition of the covariant derivative in (15) involves the introduction of a rank n + 1
operator σµ1µ2···µn+1 , which is constructed from ∂µ and ηµν . The freedom in the construction of
σµ1µ2···µn+1 can be seen from (6), (7), (17), and (5).

3. There were three different categories of gauge procedures: trivial, semi-trivial, or non-
trivial. The trivial and semi-trivial cases involve introduction of an arbitrary gauge function
Γµ1µ2··· in terms of which the phase factor Λ was defined either without (trivial case ) or with
(semi-trivial) use of the derivative operator. The non-trivial case involves the introduction of an
arbitrary phase factor Λ in terms of which the gauge function was defined. For the trivial and
semi-trivial cases the gauge field could always be transformed away. For the non-trivial case one
can construct an invariant field strength tensor and a kinetic energy term.

4. For the rank n symmetric gauge field one can define a rank n + 1 field strength tensor (as
in equations (8), (28), (43)) which was invariant under just the transformation of the gauge field,
equations (23) or (36). This allows the construction of kinetic terms for the gauge field in the
Lagrangian. The rank n+1 field strength tensor has a permutation symmetry among its indices.

5. The coupling constant g in general will have a non-zero mass dimension which can be
determined by the covariant derivative, the structure of the σµ1µ2···µn+1 and taking the gauge field
Aµ1µ2···µm to have the standard mass dimension +1. The mass dimension of g is then the inverse
of σµ1µ2···µn+1 . For example, (20) and (24) imply g has a mass dimension of −1; equations (7)
and (37) imply g has a mass dimension of −2. These theories having a dimensionful coupling
are nonrenormalizable. There are cases (e.g. the standard rank 1 case of (6) or the rank 3 case
of (34)), where g has mass dimension 0 and should therefore be renormalizable.

There have been other studies of higher rank (i.e. higher spin) gauge fields. In particular, the
work of Fronsdal sought to extend a gauge procedure to higher rank fields of both integer [2]
and half-integer spin [3]. In these works the gauge transformation of the gauge fields is different
from that in the present work. In [2] the transformation of the rank n gauge field involves one
derivative operator acting on rank n − 1 gauge parameters. Here the transformation of the
rank n gauge field involves up to n derivative operators acting on a scalar function (for example
see equations (32) and (38)). In both the present work and in [2] the rank n ≥ 2 gauge fields
are totally symmetric under exchange of indices. However, in [2] the gauge fields must satisfy
a traceless condition that is not necessary in the present work. A current review of these higher
spin gauge theories, and connections to supersymmetry and string theory can be found in [11].
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