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We discuss multi-soliton solutions with discrete symmetries in the chiral quark soliton model
using the rational map ansatz. The solutions exhibit degenerate bound spectra of the quark
orbits depending on the background pion field configurations. It is shown that resultant
baryon densities inherit the same discrete symmetries as the chiral fields. Evaluating the
radial component of the baryon density, shell-like structure of the valence quark spectra is
also observed.

1 Introduction

The chiral quark soliton model (CQSM) was developed in 1980’s as a low-energy effective theory
of QCD. Since it includes the Dirac Sea quark contribution and explicit valence quark degrees
of freedom, the model interpolates between the constituent quark model and the Skyrme model
[1–4]. The CQSM is derived from the instanton liquid model of QCD vacuum and incorporates
the non-perturbative feature of the low-energy QCD, spontaneous chiral symmetry breaking. It
has been shown that the B = 1 solution provides correct observables such as a nucleon including
mass, electromagnetic value, spin carried by quarks, parton distributions and octet SU(3) baryon
spectra. For B = 2, the stable axially symmetric soliton solution was found in [5]. The solution
exhibits doubly degenerate bound spectrum of the quark orbits in the background of axially
symmetric chiral fields with winding number two. Upon quantization, various dibaryon spectra
were obtained, showing that the quantum number of the ground state coincide with that of
physical deuteron [6, 7]. For B > 2, the Skyrme model predicts that minimum energy solutions
have only discrete, crystal-like symmetries [8–10]. According to this prediction, we studied the
CQSM with B = 3 tetrahedrally symmetric chiral fields and obtained triply degenerate spectrum
of the quark orbits [11]. Its large degeneracy indicates that the tetrahedrally symmetric solution
may be the lowest-lying configuration. Thus, for B > 3, one can also expect that the lowest-lying
solutions in the CQSM inherits the discrete symmetries predicted in the Skyrme model.

Following the B = 3 case, we shall study soliton solutions with B ≥ 3 in the CQSM using
the rational map ansatz with discrete symmetries obtained in the Skyrme model. We will show
obtained classical self-consistent soliton solutions with B = 1–9, 17. These solutions exhibit
various degenerate spectra of the quark orbits depending on the symmetry of the background
chiral fields. Such degeneracy generates large shell gaps, which suggests that the solutions
are stable local minima. It is shown that resultant baryon number densities inherit the same
symmetries as the chiral fields. Evaluating the radial component of the baryon density, shell-like
structure of the valence quarks can be observed.

2 The model

The CQSM is derived from the instanton liquid model of the QCD vacuum and incorporates the
nonperturbative feature of the low-energy QCD, spontaneous chiral symmetry breaking. The
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vacuum functional is defined by [1]

Z =
∫

DπDψDψ† exp
[
i

∫
d4x ψ̄ (i�∂ −MUγ5)ψ

]
, (1)

where the SU(2) matrix

Uγ5 =
1 + γ5

2
U +

1 − γ5

2
U † with U = exp (iτ ·π/fπ)

describes chiral fields, ψ is quark fields and M is the constituent quark mass. fπ is the pion
decay constant and experimentally fπ ∼ 93 MeV.

In the CQSM, the number of valence quark is associated with the baryon number such that
a soliton with baryon number B consists of Nc × B valence quarks. If the correlation between
quarks is sufficiently strong, their binding energy becomes large and the valence quarks cannot
be observed as positive energy particles [12, 13]. Thus, one gets the picture of the topological
soliton model in the sense that the baryon number coincides with the winding number of the
background chiral field when the valence quarks occupy all the levels diving into negative energy
region.

The vacuum functional in (1) can be integrated over the quark fields to obtain the effective
action

Seff [U ] = −iNc lndet (i�∂ −MUγ5) (2)

= − i

2
Nc SplnD†D, (3)

where D = i�∂ −MUγ5 . We introduce the eigenequation

H(Uγ5)φµ(x) = Eµφµ(x), H(Uγ5) = −iα · ∇ + βMUγ5 . (4)

The effective action Seff(U) is ultraviolet divergent and hence must be regularized. Using the
proper-time regularization scheme [14], we can write

Sreg
eff [U ] =

i

2
Nc

∫ ∞

1/Λ2

dτ

τ
Sp
(
e−D†Dτ − e−D†

0D0τ
)

=
i

2
NcT

∫ ∞

−∞
dω

2π

∫ ∞

1/Λ2

dτ

τ
Sp
[
e−τ(H2+ω2) − e−τ(H2

0+ω2)
]
, (5)

where T is the Euclidean time separation, D0 and H0 are operators with U = 1.
At T → ∞, we have eiSeff ∼ e−iEfieldT . The total energy then is given by

Estatic[U ] = Eval[U ] + Efield[U ] − Efield[U = 1], (6)

where

Eval = Nc

∑
i

E
(i)
val (7)

is the valence quark contribution with the valence energy of the i-th valence quark E(i)
val, and the

vacuum part is

Efield = Nc

∑
µ

{
N (Eµ)|Eµ| + Λ√

4π
exp

[
−
(
Eµ

Λ

)2
]}
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with

N (Eµ) = − 1√
4π

Γ

(
1
2
,

(
Eµ

Λ

)2
)
.

Λ is a cutoff parameter evaluated by the condition that the derivative expansion of (5) reproduces
the pion kinetic term with the correct coefficient, i.e.,

f2
π =

NcM
2

4π2

∫ ∞

1/Λ2

dτ

τ
e−τM2

. (8)

The constituent quark mass M is only one free parameter and we adopt the value M = 400 MeV,
which reproduces the observables of the nucleon and the delta. From (8), one obtains Λ ∼
637 MeV. The contribution for the total energy in the absence of the chiral fields (U = 1) can
be estimated using the eigenstates of eigenequation,

H0φ
(0)
µ (x) = E(0)

µ φ(0)
µ (x), H0 = −iα · ∇ + βM. (9)

In the Skyrme model, it is known that solitons with B ≥ 3 have particular discrete sym-
metries [8]. Therefore, we expect that soliton solutions of the CQSM inherit the same discrete
symmetry as skyrmions. Houghton, Manton and Sutcliffe proposed remarkable ansatz for the
chiral fields, the rational map ansatz [10]. According to this ansatz, the chiral fields are expressed
in a rational map as

U(r, z) = exp(iF (r)n̂R · τ ), n̂R =
1

1 + |R(z)|2 (2Re [R(z)], 2Im [R(z)], 1 − |R(z)|2) (10)

and R(z) is the rational map. The complex coordinate z is given by z = tan(θ/2)eiϕ via
stereographic projection. Rational maps are maps from CP (1) to CP (1) (equivalently, from S2

to S2) classified by winding number. In [10], Manton et al. showed that B = N skyrmions
can be well-approximated by rational maps with winding number N . The rational map with
winding number N possesses (2N + 1) complex parameters whose values can be determined by
imposing the symmetry of the skyrmion. We shall use this ansatz for the background chiral
fields in the CQSM. We employ the explicit forms of R(z) for various B proposed in [10] to our
analysis. Since the chiral fields in (10) is parameterized by polar coordinates, one can apply the
numerical technique developed for B = 1 to find solutions with higher B.

Field equations for the chiral fields can be obtained by demanding that the total energy in
equation (6) be stationary with respect to variation of the profile function F (r),

δ

δF (r)
Estatic = 0,

which gives

S(r) sinF (r) = P (r) cosF (r), (11)

where

S(r) = Nc

∑
µ

(
nµθ(Eµ) + sign(Eµ)N (Eµ)

)〈µ|γ0δ(|x| − r)|µ〉, (12)

P (r) = Nc

∑
µ

(
nµθ(Eµ) + sign(Eµ)N (Eµ)

)〈µ|iγ0γ5n̂R · τ δ(|x| − r)|µ〉. (13)

The procedure to obtain self-consistent solutions of equation (11) is that 1) solve the eigenequa-
tion in (4) under an assumed initial profile function F0(r), 2) use the resultant eigenfunctions and
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eigenvalues to calculate S(r) and P (r), 3) solve equation (11) to obtain a new profile function,
4) repeat 1)–3) until the self-consistency is attained.

The baryon density b(x) is defined by the zeroth component of the baryon current [2];

b(x) =
1
Nc

〈ψ̄γ0ψ〉 = bval(x) + bfield(x), (14)

where

bval(x) =
∑

i

b
(i)
val(x) =

1
Nc

∑
i

φi(x)†φi(x),

bfield(x) =
1
Nc

∑
µ

[
sign(Eµ)N (Eµ)φµ(x)†φµ(x) − sign(E(0)

µ )N (E(0)
µ )φ(0)

µ (x)†φ(0)
µ (x)

]
. (15)

To examine the shell structure of the quarks, we evaluated the radial density for the ith
valence quark ρ(i)(r) in which the angular degrees of freedom are integrated via,

ρ(i)(r) =
∫
dϕ

∫
sin θ dθ b(i)val(r, θ, ϕ) (16)

with the baryon number

B =
∑

i

∫
dr r2ρ(i)(r). (17)

3 Results and discussions

Let us first show some results of the spectral flow analysis. For convenience, we shall take

F (r) =
{ −π + πr/X for r < X,

0 otherwise
(18)

as a trial function for the profile function. In Figs. 1, 2, we show the spectral flow with B = 3, 7.
As can be seen, the number of B positive energy levels are diving into negative energy region
and thus we obtain the baryon number B soliton solutions. In Table 1 there are the results for
the valence quark levels as well as the vacuum sea contributions. The valence quark spectra
show various degenerate patterns depending on the background configuration. The total energy
indicates that all the solitons are deep bound states. From (15), we estimated the baryon number
density (see Fig. 3). The density inherits the same symmetry as the corresponding skyrmion.

In Fig. 4, we display the valence quark spectra together with the results of B = 1, 2 [6]. It
is interesting that the results strongly suggest the existence of shell structure for the valence
quarks. The spectra show (i) four-fold degeneracy of the ground state labeled by G and various
degenerate pattern for excited levels labeled by A1,A2, . . ., (ii) a large energy gap between the
ground state G and the first excited level A1. We suspect that these large degeneracy should
contribute to the minimization of the total energy. Note that the small dispersions of the spectra
observed here are caused by the finite size effect of the basis. Increasing the size rmax together
with increase of the number of the basis, more accurate degeneracy will be attained.

The bunch of the valence spectra caused by symmetry have also been observed within the
study of heavier nuclear system. As discussed in Ref. [10], the group theory should predict
the level structure for pion fluctuation. However, our problem is more complicated due to the
presence of quarks.



Multi-Soliton Solutions in the Chiral Quark Soliton Model 919

Figure 1. Spectral flow of B = 3 with the occu-
pation number.

Figure 2. Spectral flow of B = 7 with the occu-
pation number.

Table 1. Mass spectra for B = 1–9, 17 (in MeV). The data for B = 1, 2 are taken from Ref. [6]. The
ratio of the mass Estatic to B × E

(B=1)
static are compared to that of the Skyrme model [10].

B E
(i)
val Efield Estatic Estatic/BE

(B=1)
static

Ours Skyrme
1 173 674 1192 1.00 1.00
2 173 173 1166 2204 0.92 0.95
3 210 210 210 1633 3522 0.98 0.96
4 144 146 146 146 2628 4378 0.92 0.92
5 123 131 131 139 210 3265 5467 0.92 0.93
6 120 124 150 150 206 206 3740 6603 0.92 0.92
7 115 120 120 120 166 166 166 4554 7478 0.90 0.90
8 97 97 115 120 139 139 203 203 5229 8565 0.90 0.91
9 99 105 105 121 142 142 210 210 210 5700 9742 0.91 0.89
17 83 95 95 95 153 156 157 173 175

177 178 179 192 194 194 196 196 10586 18650 0.93 0.88
5∗ 157 157 157 232 232 2874 5680 0.95 1.00

B�3 B�4 B�5 B�6

B�7 B�8 B�9 B�5 octahedron

Figure 3. Baryon number densities.
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Figure 4. Valence quark spectra for B = 1–9, 17.

Let us show how the shell deformation is related to the degeneracy of the spectrum. In
general, if eigenequation

Hψµ = Eµψµ (19)

is invariant under a symmetric operation R ∈ G, the equation transforms as

RHψµ = H(Rψµ) = Eµψµ. (20)

Thus the states {ψµ, Rψµ} have the same energy Eµ. The set of dµ eigenfunctions {ψ(µ)
i }

(i = 1, . . . , dµ) belonging to a given eigenvalue Eµ will provide the basis for an irreducible
representation of the group G of the Hamiltonian [15]:

Rψ
(µ)
j =

∑
i

ψ
(µ)
i D

(µ)
ij (R). (21)

The operator R are constructed as follows. If chiral fields have some particular point group
symmetry i.e., U(x′) = G(a)U(x)G(a)† (G(a) ∈ SU(2)I), the Dirac equation is invariant under
the rotation

x′ = ax (22)

with

x′ = (t,x′), a = (1,a), x = (t,x), (23)

accompanying the iso-rotation

(iγµ∂µ −MU(x))ψ(x) = 0 ⇒ (iγν∂′ν −MU(x′))ψ′(x′) = 0 (24)
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Figure 5. Baryon number density of ith valence
quarks ρ(i)(r) of B = 3, with the occupation num-
bers and their eigenvalues (in MeV).

Figure 6. Baryon number density of ith valence
quarks ρ(i)(r) of B = 5, with the occupation num-
bers and their eigenvalues (in MeV).

Figure 7. Baryon number density of ith valence
quarks ρ(i)(r) of B = 7, with the occupation num-
bers and their eigenvalues (in MeV).

Figure 8. Baryon number density of ith valence
quarks ρ(i)(r) of B = 9, with the occupation num-
bers and their eigenvalues (in MeV).

and

ψ′(x′) = S(a) ×G(a)ψ(x), (25)

where S(a) satisfies aν
µγ

µ = S−1γνS. The operator R corresponding to this rotation is defined
by

ψ′(x) def= Rψ(x) = S(a) ×G(a)ψ(a−1x). (26)

One can easily check that R commutes with the Hamiltonian in (4). Constructing R for each
symmetries, one should be able to deduce the degeneracy structure of the spectra occurring in
the valence levels. The four-fold degeneracy of the lowest states may be ascribed to the chiral
symmetry SU(2)L×SU(2)R of the Hamiltonian. The degenerate structure will be understood if
symmetric operators of the Hamiltonian which consist of the angular momentum, spin, isospin
and winding number, are explicitly constructed.

In Figs. 5–8, we present the results of ρ(i)(r) for B = 3, 5, 7 and 9. The behavior of the density
near the origin confirms at least three shells (G,A1,A2). G behaves like “S-wave”, and others
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like “P -, D-wave” in a hydrogen-like atom. Although the shell structure is emerged, most of the
densities are nearly on the same surface and very small (not zero) near the origin. The plateau
in the density observed at the center of the nucleus [16] can not be attained in our solutions.
Therefore, one may need to employ the multi-shell ansatz [17] even in the case of light nuclei.
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