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Four Dimensional Cubic Supersymmetry
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A four dimensional non-trivial extension of the Poincaré algebra different from supersymmet-
ry is explicitly studied. Representation theory is investigated and an invariant Lagrangian
is exhibited. Some discussion on the Noether theorem is also given.

1 Introduction

The concept of symmetries is a central tool in the description of physical systems. One of the
main questions is, of course, what are the mathematical structures which are useful in descri-
bing the laws of physics, and, in particular, useful in particle physics or quantum field theories.
Among others, finite-dimensional Lie algebras become essential for the description of space-time
symmetries and fundamental interactions. On the other hand, it was the discovery of super-
symmetry in relativistic quantum field theory or as a possible non-trivial extension of Poincaré
invariance [1] which gave rise to the concept of Lie superalgebras. One natural question one
should address is the possibility to weigh up, in relativistic quantum field theory, algebraic
structures which are not Lie (super)algebras. A priori this should be a difficult task. Indeed,
according to the Noether theorem, to all (Noetherian) symmetries correspond a conserved cur-
rents. These symmetries are then generated by charges which are expressed in terms of the fields.
But, having two kinds of fields, of integer or half-integer spin, which, by spin-statistics theorem
will close with commutators or anticommutators, a priori one should obtain only Lie and Lie
superalgebras. Furthermore, the Coleman–Mandula [2] and the Haag–Lopuszanski–Sohnius [3]
theorems state that within the framework of Lie algebras one obtains only the description of
space-time and/or internal symmetries, while within Lie superalgebras supersymmetry is the
unique non-trivial extension of the Poincaré algebra which is possible.

But, if one examines the hypotheses of the above theorems, one sees that it is possible to
imagine symmetries which go beyond supersymmetry. Several possibilities have been considered
in the literature, the intuitive idea being that the generators of the Poincaré algebra are obtained
as an appropriate product of more fundamental additional symmetries. These new generators
are in an appropriate representation of the Poincaré algebra.

In this contribution we would like to study one of the possible non-trivial extension of the
Poincaré algebra, different from supersymmetry, named fractional supersymmetry (FSUSY) [4–
20] and its associated underlying algebraic structure named F -Lie algebras [17,19]. In supersym-
metric theories, the extensions of the Poincaré algebra are obtained from a “square root” of the
translations, “QQ ∼ P”. In this paper, new algebras are obtained from yet higher order roots.
We mainly focus on the simplest alternative where “cubic roots” are involved “QQQ ∼ P” [20].
It is important to stress that such structures are not Lie (super)algebras and as such escape
a priori the Coleman–Mandula [2] as well as the Haag–Lopuszanski–Sohnius [3] no-go theorems.
Furthermore, as far as we know, no no-go theorem associated to such types of extensions has been
considered in the literature. This can open interesting possibilities to search for a field theoretic
realization of a non-trivial extension of the Poincaré algebra that is not the supersymmetric one.

The aim of this paper is to summarize some results already obtained in [20], i.e. to construct
explicitly the first field theoretic construction in (1 + 3) dimensions of an FSUSY with F = 3,
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which we will refer to as cubic supersymmetry, or 3SUSY. Representation of our algebra leads to
fermionic or bosonic multiplets. We find that the fermion multiplets are made of three definite
chirality fermions that are degenerate in mass, while the boson multiplets contain Lorentz scalars,
vectors and two-forms. A striking feature for the boson multiplets is the compatibility of 3SUSY
with gauge symmetry only when the latter is gauge fixed in the usual way. Some discussions on
Noether theorem in relation with 3SUSY are also given. The paper is organized as follow. In
Section 2 some results on the algebraic extension of the Poincaré algebra are given. In Section 3
representations of the 3SUSY algebra are exhibited. In Section 4, we construct an invariant
Lagrangian in the case of the bosonic multiplet. Section 5 is devoted to some discussions on
Noether theorem. Finally, some conclusions are given in Section 6.

2 Non trivial extension of the Poincaré algebra

A natural generalization of Lie (super)algebras which is relevant for the algebraic description of
FSUSY was defined in [18, 19] and called an F -Lie algebra. An F−Lie algebra admits a ZF -
gradation, the zero-graded part being a Lie algebra. An F -fold symmetric product (playing the
role of the anticommutator in the case F = 2) expresses the zero graded part in terms of the
non-zero graded part. The first examples of F -Lie algebras where infinite-dimensional [17]. It
was then established that one of these examples of infinite-dimensional algebras was relevant to
apply FSUSY on relativistic anyons in (1 + 2)D [16]. Later on, it was shown how to construct
finite-dimensional F -Lie algebras with F > 2 by an inductive process starting from Lie algebras
and Lie superalgebras [19]. Among these families of examples one can identify F -Lie algebras
that could generate extensions of the Poincaré algebra. One of these examples is given by

g = sp(4,R) ⊕ ad (sp(4,R)) (1)

with ad (sp(4,R)) the adjoint representation of sp(4,R). g0 = sp(4,R) is the zero graded part
(“bosonic”) of g and g1 = ad (sp(4,R)) is the graded part of the algebra. If we denote Ja, a =
1, . . . , 10 a basis of sp(4,R), Aa the corresponding basis for ad (sp(4,R)), and gab = Tr (AaAb)
the Killing form of sp(4,R), then the F -Lie algebra of order 3 g reads [19,20]1

[Ja, Jb] = f c
ab Jc, [Ja, Ab] = f c

ab Ac, {Aa, Ab, Ac} = gabJc + gacJb + gbcJa, (2)

where f c
ab are the structure constant of sp(4,R) and {Aa, Ab, Ac} is given by the symmetric

three-fold product AaAbAc +AaAcAb +AbAcAa +AbAaAc +AcAaAb +AcAbAa.
Observing that so(1, 3) ⊂ so(2, 3) ∼= sp(4), and that the (1 + 3)D Poincaré algebra is related

to sp(4) through an Inönü–Wigner contraction, from the F -Lie algebra (2), an extension of the
Poincaré algebra can be constructed [20]:

[Lmn, Lpq] = ηnqLpm − ηmqLpn + ηnpLmq − ηmpLnq, [Lmn, Lp] = ηnpPm − ηmpPn,

[Lmn, Qp] = ηnpQm − ηmpQn, [Pm, Qn] = 0,
{Qm, Qn, Qr} = ηmnPr + ηmrPn + ηrnPm, (3)

where ηmn is the Minkowski metric, Lmn, Pm are the Poincaré generators and Qm are the
“supercharges” in the vector representation of so(1, 3).

3 Representations

Representations of (3) were also studied in [20]. It turns out that, for algebras defined by cubic
relations, the situation is a more difficult task than in usual supersymmetric theories. Indeed,

1In addition to these relations, one has also some appropriate Jacobi identities. See [18–20] for details.
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representations of supersymmetry are related to representations theory of the well-known Clifford
algebra, while representation theory of FSUSY is related to Clifford algebras of polynomial [21].
To obtain representations of the algebra (3), we rewrite the RHS of the trilinear bracket as
{Qm, Qn, Qr} = fmnr = f s

mnr Ps, with fmnr
s = ηmnδr

s + ηmrδn
s + ηrnδm

s. This substitution
shows that the cubic polynomial f(v0, v1, v2, v3) = fmnrv

mvnvr = 3(v.P )(v.v) is associated to
the symmetric tensor fmnr. Moreover, the algebra (3) simply means that f(v) = (vmQm)3, as
can be verified by developing the cube and identifying all terms, using the trilinear bracket.
The generators Qm, m = 0, . . . , 3, which are associated with the variables vm, m = 0, . . . , 3,
then generate an extension of the Clifford algebra called Clifford algebra of the polynomial f
(denoted Cf ). This means that the Q’s allow to “linearize” f . The general representation theory
of Cf is not known, however, a systematic method to represent Cf by appropriate matrices has
been given [22]. For the algebra (3) one obtains [20]

Qm =


 0 Λ1/3γm 0

0 0 Λ1/3γm

Λ−2/3Pm 0 0


 . (4)

with γm being the 4D Dirac matrices and Pm = −i ∂
∂xm . It is interesting to notice that because

P is dimensionful, a parameter with a mass dimension appears naturally in (4).
The Q being in the vector representation of so(1, 3), it is easy to see that

Jmn =
1
4
(γmγn − γnγm) + i(xmPn − xnPm) (5)

are the appropriate Lorentz generators acting on Q: [Jmn, Qr] = ηnrQm − ηmrQm.

Introducing the 4D Dirac matrices in the Weyl representation, γm =
(

0 σm

σ̄m 0

)
, with

σm αα̇ = (1, σi), σ̄m
α̇α = (1,−σi) and σi the Pauli matrices (the convention for dotted and

undotted indices are those conventionally used in SUSY, – see e.g. appendix B of [20]), shows
that the representation (4) is reducible and leads to the two inequivalent 6D representations:

Qm =


 0 Λ1/3σm 0

0 0 Λ1/3σ̄m

Λ−2/3Pm 0 0


 , Qm =


 0 Λ1/3σ̄m 0

0 0 Λ1/3σm

Λ−2/3Pm 0 0


 . (6)

In this representation the trilinear part of the algebra (3) is realized as

QmQnQr +QmQrQn +QnQmQr +QnQrQm +QrQmQn +QrQnQm

= ηmnPr + ηnrPm + ηmrPn. (7)

3.1 Fermionic multiplet

As usual, the content of the representation is not only specified by the form of the matrix
representation, but also by the behavior of the vacuum under Lorentz transformations. If we
denote by Ω the vacuum, which is in some specified representation of the Lorentz algebra,
with Σmn the corresponding Lorentz generators, then Jmn given in (5) is replaced by Jmn+Σmn.
In the case, where Ω is a Lorentz scalar, one sees that the multiplet of the representations (6)
contains two left-handed and one right-handed fermions for the first matrices, while the multiplet
of the representation contains one left-handed and two right-handed fermions for the second

matrices. These two multiplets are CPT conjugate. In the first case, if we denote Ψ =


ψ1α

ψ̄α̇
2

ψ3α


,
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then under a 3SUSY transformation we have δεΨ = εmQmΨ and we obtain

δεψ1α = εnΛ1/3σnαα̇ψ̄2
α̇, δεψ̄2

α̇ = εnΛ1/3σ̄n
α̇αψ3α, δεψ3α = εnΛ−2/3Pnψ1α (8)

with ε a pure imaginary number.

3.2 Bosonic multiplet

In the previous subsection, we were considering the fundamental representation associated to

the matrices (6), say Ψ =


ψ1α

ψ̄2
α̇

ψ3α


 and Ψ′ =


ψ̄

′
1
α̇

ψ′
2α

ψ̄′
3
α̇


, i.e. with the vacuum Ω in the trivial

representation of the Lorentz algebra. In this section boson multiplets, will be introduced,
corresponding to a vacuum in the spinor representations of the Lorentz algebra. This means
that four types of boson multiplets can be introduced: Ψ⊗Ωα,Ψ′ ⊗Ωα, with Ωα a left-handed
spinor and Ψ ⊗ Ω̄α̇, Ψ′ ⊗ Ω̄α̇ with Ω̄α̇ a right-handed spinor.

For the multiplet associated to Ψβ = Ψ⊗Ωβ , we have Ψβ =


ρ1α

β

ρ̄2
α̇β

ρ3α
β


 and for the one (CPT

conjugate of the previous) Ψβ̇ = Ψ′ ⊗ Ωβ̇ =



ρ̄1

α̇
β̇

ρ2αβ̇

ρ̄3
α̇

β̇


. The transformation under 3SUSY is

δεΨβ = εmQmΨβ with Qm given in (6) and similarly for Ψβ̇ .
Notice that ρ1, ρ̄1, ρ̄2, ρ2 and ρ3, ρ̄3 are not irreducible representations of sl(2,C) ∼= so(1, 3),

we therefore define

ρ1 = ϕ I2 +
1
2
Bmn σ

nm, ρ̄1 = ϕ′ Ī2 +
1
2
B′

mnσ̄
nm, ρ̄2 = Am σ̄m, ρ2 = A′m σm,

ρ3 = ϕ̃ I2 +
1
2
B̃mn σ

nm, ρ̄3 = ϕ̃′ Ī2 +
1
2
B̃′

mn σ̄
nm (9)

with I2 and Ī2 the two by two identity matrices, σmn and σ̄mn the Lorentz generators for the
two spin representations, Am and A′m two vectors, ϕ, ϕ̃ and ϕ′, ϕ̃′ four scalars, Bmn, B̃mn two
self-dual two-forms and B′

mn, B̃′
mn two anti-self-dual two-forms. Then one can show that the

transformations read [20]

δεϕ = Λ1/3εmAm, δεϕ
′ = Λ1/3εmA′

m,

δεBmn = −Λ1/3 (εmAn − εnAm) + Λ1/3iεmnpqε
pAq,

δεB
′
mn = −Λ1/3

(
εmA

′
n − εnA

′
m

) − Λ1/3iεmnpqε
pA′q,

δεAm = Λ1/3
(
εmϕ̃+ εnB̃mn

)
, δεA

′
m = Λ1/3

(
εmϕ̃

′ + εnB̃′
mn

)
,

δεϕ̃ = Λ−2/3εmPmϕ, δεϕ̃
′ = Λ−2/3εmPmϕ

′,

δεB̃mn = Λ−2/3εpPpBmn, δεB̃
′
mn = Λ−2/3εpPpB

′
mn. (10)

The second bosonic multiplet being CPT conjugate to the first one, we have
(
ρ̄1

α̇
β̇

)� = ρ1
α

β ,(
ρ2αβ̇

)� = ρ̄2α̇β and
(
ρ̄3

α̇
β̇

)� = ρ3
α

β . [B�, the complex conjugate of B, is not to be confused
with �B, the dual of B, see after.] This means, paying attention to the position of the indices,
that we have

ϕ′� = −ϕ, ϕ̃′� = −ϕ̃, B′ �
mn = −Bmn, B̃′ �

mn = −B̃mn, A′ �
m = Am. (11)

These relations are compatible with the transformations laws given in (10) since εn� = −εn and
Pn = −i ∂

∂xn .
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4 Invariant action

To construct a real invariant action involving the bosonic multiplets (9), we introduce the real
fields

A− = i
A−A′
√

2
, A+ =

A+A′
√

2
,

B− =
B −B′
√

2
, B+ = i

B +B′
√

2
, B̃− =

B̃ − B̃′
√

2
, B̃+ = i

B̃ + B̃′
√

2
,

ϕ− =
ϕ− ϕ′
√

2
, ϕ+ = i

ϕ+ ϕ′
√

2
, ϕ̃− =

ϕ̃− ϕ̃′
√

2
, ϕ̃+ = i

ϕ̃+ ϕ̃′
√

2
. (12)

These new fields form now one (reducible) multiplet of 3SUSY, with �B− = B+ (�B− is the
dual of B− [20]). The corresponding two- and three-form field strengths read

F±mn = ∂mA±n − ∂nA±m,

H±mnp = ∂mB±np + ∂nB±pm + ∂pB±mn. (13)

They are invariant under the gauge transformations

ϕ± → ϕ±,
A±m → A±m + ∂mχ±,
B±mn → B±mn + (∂mχ±n − ∂nχ±m), (14)

where χ± (χm± ) are arbitrary scalar (vector) functions (χm− and χm
+ can still be related in order

to preserve the duality relations between B− and B+)2.
In a similar way we introduce the field strength H̃−mnp, H̃+mnp, as well as the dual fields

�H−m, �H+m, �H̃−m, �H̃+m (where �Hm ≡ 1
6εmnpqH

npq. For instance �H̃−m = i∂nB+mn). We
consider now the following local gauge invariant and zero graded Lagrangian,

L = ∂mϕ−∂mϕ̃− − ∂mϕ+∂
mϕ̃+

− 1
4
F−mnF−mn +

1
4
F+mnF+

mn − 1
2

(∂mA−m)2 +
1
2

(∂mA+
m)2

− 1
12
H−mnpH̃−mnp +

1
12
H+mnpH̃+

mnp +
1
2

�H−m
�H̃−m − 1

2
�H+m

�H̃+
m. (15)

By means of (12), a direct calculation shows that (15) is invariant under the transformations (10),
up to a surface term. It is interesting to notice that the 3SUSY invariance is compatible with
gauge symmetries if the latter are gauged fixed. A usual ’t Hooft Feynman gauge fixing term
(−1

2 (∂mA−m)2 + 1
2 (∂mA+

m)2) is required for the vector fields. For the two forms, due to the
relation �B− = B+ also some gauge fixing terms à la ’t Hooft Feynman are present. Developing
all terms in (15) the Lagrangian can be rewritten à la “Fermi-like”

L = ∂mϕ−∂mϕ̃− − 1
2
∂mA−n∂

mA−n +
1
4
∂mB−np∂

mB̃−np

− ∂mϕ+∂
mϕ̃+ +

1
2
∂mA+n∂

mA+
n − 1

4
∂mB+np∂

mB̃+np

(a similar Lagrangian appears in the action-at-a-distance formalism for vector and two-forms –
see e.g. [23]).

2Note that the gauge transformations (14) correspond naturally to the zero-, one- and two-form character of
the components of the 3SUSY gauge multiplet.
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One should note, though, the relative minus signs in front of the kinetic terms of the vector
fields in (15) which endanger a priori the boundedness from below of the density energy of the
“electromagnetic” fields. This difficulty does not have a clear physical interpretation as long
as interaction terms have not been included, and necessitates a more careful study of the field
manifold associated to the density energy.

5 Noether currents

The 3SUSY algebra we have studied has one main difference from the usual Lie (super)algebra:
it does not close through quadratic, but rather cubic, relations. Moreover, it might be possible
that some usual results of Lie (super)algebra do not apply straightforwardly. One example is
the Noether currents and their associated algebra. This interesting point was studied in [20].

In this section we would like, however, to construct explicitly the Noether current. Using (15)
and (10) we obtain

Jmn = −iΛ1/3(A−n∂mϕ̃− − ∂mA−nϕ̃−) − iΛ1/3(A+n∂mϕ̃+ − ∂mA+nϕ̃+)

+ iΛ1/3(B̃−rn∂mA
r
− − B̃−rn∂mA

r
−) + iΛ1/3(B̃+rn∂mA

r
+ − B̃+rn∂mA

r
+) (16)

− iΛ−2/3(∂mϕ−∂nϕ− − ∂mϕ+∂nϕ+) − i

4
Λ−2/3(∂mB

rs
− ∂nB−rs − ∂mB

rs
+ ∂nB+rs),

which is, due to the equations of motion, conserved ∂mJ
mn = 0 (up to a surface term). Then,

the conserved charges are obtained as usual Q̂m =
∫
d3xJ0m. Introducing the conjugate mo-

mentum Π of the fields Ψ (where Ψ is one of the fields of Section 4): Π = δL
δ∂0Ψ after the usual

quantization (equal-time commutation relations) one easily obtains

δεΨ =
[
εnQ̂

n,Ψ
] (

δQmΨ =
[
Q̂m,Ψ

])
. (17)

In particular, this means that the algebra (3) is realized through

(δQm .δQn .δQr + perm) Ψ =
[
Q̂m,

[
Q̂n,

[
Q̂r,Ψ

]]]
+ perm

= ηmn

[
P̂r,Ψ

]
+ ηmr

[
P̂n,Ψ

]
+ ηrn

[
P̂m,Ψ

]
= (ηmnδPr + ηmrδPn + ηrnδPm) Ψ (18)

with P̂ the generators of the Poincaré translations. Indeed, starting with the abstract algebra (3),
we can represent it by some matrices as in Section 3 (see e.g. (4)). In this case the product
of two transformations will be given by δnδmΨ = QnQmΨ and the algebra will be realized as
in (7). But, we can also represent (3) with commutators (17) acting on some Hilbert space,
thus the product of two transformations will be given by δnδmΨ =

[
Q̂n,

[
Q̂m,Ψ

]]
leading to the

realization (18) of the algebra (3). For a more general discussion one can see [20].

6 Conclusion

In this paper we have studied some four-dimensional realizations of 3SUSY, a non-trivial exten-
sion of the Poincaré algebra different from supersymmetry. Representation theory was explicitly
constructed. Then, an invariant Lagrangian involving bosonic fields was given (some Lagrangian
involving fermionic fields was also considered in [20]). The next step will be to construct an
interacting theory.
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