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Splitting the Kemmer–Duffin–Petiau Equations
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We study internal structure of the Kemmer–Duffin–Petiau equations for spin-0 and spin-1
mesons. We demonstrate, that the Kemmer–Duffin–Petiau equations can be splitted into
constituent equations, describing particles with definite mass and broken Lorentz symmetry.
We also show that solutions of the three-component constituent equations fulfill the Dirac
equation.

1 Introduction

In recent years there has been a renewed interest in the Kemmer–Duffin–Petiau (KDP) theory
describing spin-0 and spin-1 mesons [1] due to discovery of a new conserved four-vector current
with positive zeroth component [2], which can be thus interpreted as a probability density.
A progress was also made in demonstrating equivalence of the KDP and the Klein–Gordon
equations, especially when interactions are taken into account, c.f. [3] and references therein.
The KDP equations has been also studied in the context of electromagnetic interactions [4–6],
parasupersymmetric quantum mechanics [4], EPR type nonlocality [7], and Riemann–Cartan
space-time [8].

It is well known that the KDP equations contain redundant components – only 2 (2s+ 1)
components are needed to describe free spin-s particles with nonzero rest masses [9] while spin-0
and spin-1 KDP equations contain 5 and 10 components, respectively. The presence of redun-
dant components in KDP equations leads for some interactions to nonphysical effects such as
superluminal velocities [10,9]. It is possible, however, to obtain physically acceptable equations
for arbitrary spin removing redundant components with use of additional covariant condition [9].
On the other hand, presence of redundant components suggests that the KDP equations pos-
sess internal structure. The aim of the present paper is to investigate this inner structure. We
shall describe a systematic procedure of splitting (five-component) spin-0 and (ten-component)
spin-1 KDP equations by means of the spinor calculus into pairs of constituents equations with
smaller numbers of components, such that solutions of the latter equations fulfill the initial KDP
equations. Since mesons are spin-0 and spin-1 quark-antiquark bound states it is tempting to
recognize the resulting equations as quark equations. Indeed, we shall show that solutions of
constituent equations fulfill the Dirac equation.

The paper is organized as follows. In Section 2 the Kemmer–Duffin–Petiau equations for
spin 0 and spin 1 are described, and necessary definitions and conventions are given. In Section 3
splitting of the KDP equations into three-component constituent equations is achieved for s = 0
(obtaining in a new way our previous result [11]). Main results are described in the last two
Sections. In Section 4 we interpret the constituent equations finding direct relation with the
Dirac equation. In the last Section we outline the procedure of splitting the KDP equations for
s = 1, and discuss our results in the light of several current problems of quark theory.
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2 Kemmer–Duffin–Petiau equations

In what follows tensor indices are denoted with Greek letters, µ = 0, 1, 2, 3. We shall use the
following convention for the metric tensor: gµν = diag(1,−1,−1,−1) and we shall always sum
over repeated indices. Four-momentum operators are defined in natural units (c = 1, � = 1) as
pµ = i ∂

∂xµ
.

The KDP equations for spin 0 and 1 are written as:

βµp
µΨ = mΨ, (1)

with 5 × 5 and 10 × 10 matrices βµ, respectively, which fulfill the following commutation rela-
tions [1]:

βλβµβν + βνβµβλ = gλµβν + gνµβλ. (2)

In the case of 5 × 5 (spin-0) representation of βµ matrices equation (1) is equivalent to the
following set of equations:

pµψ = mψµ,

pνψ
ν = mψ, (3)

µ, ν = 0, 1, 2, 3, if we define Ψ in (1) as:

Ψ = (ψµ, ψ)T =
(
ψ0, ψ1, ψ2, ψ3, ψ

)T
, (4)

where ()T denotes transposition of a matrix. Let us note that equation (3) can be obtained by
factorizing second-order derivatives in the Klein–Gordon equation pµp

µ ψ = m2ψ.
In the case of 10 × 10 (spin-1) representation of matrices βµ equation (1) reduces to:

pµψν − pνψµ = mψµν ,

pµψ
µν = mψν , (5)

µ, ν = 0, 1, 2, 3, with the following definition of Ψ in (1):

Ψ =
(
ψµν , ψλ

)T
=

(
ψ01, ψ02, ψ03, ψ23, ψ31, ψ12, ψ0, ψ1, ψ2, ψ3

)T
, (6)

where ψλ are real and ψµν are purely imaginary (in alternative formulation we have −∂µψν +
∂νψµ = mψµν , ∂µψ

µν = mψν , where ψλ, ψµν are real). Because of antisymmetry of ψµν we have
pνψ

ν = 0 what implies spin 1 condition. The set of equations (5) was first written by Proca [1].

3 Splitting the spin-0 Kemmer–Duffin–Petiau equations

Equations (3) can be written within spinor formalism as:

pAḂψ = mψAḂ,

pAḂψ
AḂ = 2mψ, (7)

A = 1, 2, Ḃ = 1̇, 2̇, where the spinor components are defined as [1]:

pAḂ =
(
p0σ0 + σ · p)AḂ =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
, (8)
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where σ0 is the 2 × 2 unit matrix and σi, i = 1, 2, 3, are the Pauli matrices (analogously,

ψAḂ =
(
ψ0σ0 +ψ · p)AḂ).

Splitting the last of equations (7), pAḂψ
AḂ = p11̇ψ

11̇ + p21̇ψ
21̇ + p12̇ψ

12̇ + p22̇ψ
22̇ = 2mψ, we

obtain two sets of equations involving components ψ11̇, ψ21̇, ψ and ψ12̇, ψ22̇, ψ, respectively:

p11̇ψ = mψ11̇,

p21̇ψ = mψ21̇,

p11̇ψ
11̇ + p21̇ψ

21̇ = mψ; (9)

p12̇ψ = mψ12̇,

p22̇ψ = mψ22̇,

p12̇ψ
12̇ + p22̇ψ

22̇ = mψ, (10)

each of which describes particle with mass m (we check this substituting e.g. ψ11̇, ψ21̇ or ψ12̇,
ψ22̇ into the third equations). The splitting preserving pµp

µψ = m2ψ is possible due to spinor
identities

p11̇p
11̇ + p21̇p

21̇ = p12̇p
12̇ + p22̇p

22̇ = pµp
µ, (11)

which follow directly from (8).
Thus solutions of equations (9), (10) fulfill the KDP equations (7). We described these

equations in [11]. From each of equations(9), (10) an identity follows:

p21̇ψ11̇ = p11̇ψ21̇, (12a)

p22̇ψ12̇ = p12̇ψ22̇. (12b)

Equations (9), (10) can be written in matrix form:

ρµp
µΦ = mΦ, (13)

where Φ =
(
ψ11̇, ψ21̇, ψ

)T
,

ρ0 =


 0 0 1

0 0 0
1 0 0


 , ρ1 =


 0 0 0

0 0 −1
0 1 0


 ,

ρ2 =


 0 0 0

0 0 −i
0 −i 0


 , ρ3 =


 0 0 −1

0 0 0
1 0 0


 , (14)

and

ρ̃µp
µΦ̃ = mΦ̃, (15)

where Φ̃ =
(
ψ12̇, ψ22̇, ψ

)T
,

ρ̃0 =


 0 0 0

0 0 1
0 1 0


 , ρ̃1 =


 0 0 −1

0 0 0
1 0 0


 ,

ρ̃2 =


 0 0 i

0 0 0
i 0 0


 , ρ̃3 =


 0 0 0

0 0 1
0 −1 0


 . (16)
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Equations (13), (15) considered together:

(
ρµp

µ 0
0 ρ̃µp

µ

)(
Φ
Φ̃

)
= m

(
Φ
Φ̃

)
, (17)

are Lorentz covariant since they contain all components of the spinor ψAḂ. Obviously, all
solutions of equation (17) satisfy equation (7) but the reverse is not true.

The matrices: ρµ, ρ̃µ discussed above, c.f. equations (14), (16), fulfill the Tzou commutation
relations [11,4]

ρ(λρµρν) = g(λµρν), (18)

more complicated then (2), where (λ µ ν) is the symmetrizer. There is, however, no conjugation
rule for matrices ρµ and ρ̃µ, for example there is no such matrix S that ρ̃µ = SρµS−1. We shall
see in the next Section that a conjugation rule (charge conjugation) exists if 3 × 3 matrices ρµ

are extended to 4 × 4 Dirac matrices γµ.

4 Subsolutions of the Dirac equation

We shall now interpret the constituent equations (9), (10) together with the identities (12a),
(12b). Equation (9) and the identity (12a), as well as equation (10) and the identity (12b) can
be written in form of the Dirac equations:




0 0 p0 + p3 p1 − ip2

0 0 p1 + ip2 p0 − p3

p0 − p3 −p1 + ip2 0 0
−p1 − ip2 p0 + p3 0 0







ψ11̇

ψ21̇

χ
0


 = m




ψ11̇

ψ21̇

χ
0


 , (19)




0 0 p0 − p3 p1 + ip2

0 0 p1 − ip2 p0 + p3

p0 + p3 −p1 − ip2 0 0
−p1 + ip2 p0 − p3 0 0







ψ22̇

ψ12̇

χ
0


 = m




ψ22̇

ψ12̇

χ
0


 , (20)

respectively, with one zero component. Equation (19) can be written as γµpµΨ = mΨ with

spinor representation of the Dirac matrices, γ0 =
(

0 σ0

σ0 0

)
, γj =

(
0 −σj

σj 0

)
, j = 1, 2, 3,

γ5 =
(
σ0 0
0 −σ0

)
, Ψ =

(
ψ11̇, ψ21̇, χ, 0

)T
. Equation (20) can be analogously written as

(
γ0p0 − γ1p1 + γ2p2 + γ3p3

)
Φ = mΦ, Φ =

(
ψ22̇, ψ12̇, χ, 0

)T
.

We shall demonstrate now that equations (19) and (20) are charge conjugated one to another.
Complex conjugation of equation (19) yields:

(−1)




0 0 p0 + p3 p1 + ip2

0 0 p1 − ip2 p0 − p3

p0 − p3 −p1 − ip2 0 0
−p1 + ip2 p0 + p3 0 0







ψ11̇

ψ21̇

χ
0




∗

= m




ψ11̇

ψ21̇

χ
0




∗

, (21)

i.e. (−1)
(
γ0p0 − γ1p1 + γ2p2 − γ3p3

)
Ψ∗ = mΨ∗ where ∗ denotes complex conjugation. Acting

from the left with matrix γ3 on equation (21) we obtain equation
(
γ0p0 − γ1p1 + γ2p2 + γ3p3

)×
γ3Ψ∗ = mγ3Ψ∗, which has the same form as equation (20) (the charge conjugation matrix C is
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thus defined as Cγ0 ≡ γ3 [12]). Hence the initial equations (9), (10)) are charge conjugated one
to another in a sense that they are charge conjugated after extension to the Dirac form.

The observations made above can be given representation independent formulation. Let
us notice that the three component equations, for instance (9), (10) as well as the identi-
ties (12a), (12b), can be obtained by projecting the Dirac equation with projection operator
P4 = diag (1, 1, 1, 0). Incidentally, there are other projection operators which lead to analogous
three component equations, P1 = diag (0, 1, 1, 1), P2 = diag (1, 0, 1, 1), P3 = diag (1, 1, 0, 1) but
we shall need only the operator P4.

In general, we can consider subsolutions, of form P4Ψ, of the Dirac equation:

γµpµP4Ψ = mP4Ψ, (22)

which is equivalent to (19) in the case of spinor representation of the Dirac matrices.
Accordingly, acting from the left on (22) with P4 and (1 − P4) we obtain two equations:

P4 (γµpµ)P4Ψ = mP4Ψ, (23a)
(1 − P4) (γµpµ)P4Ψ = 0. (23b)

In the spinor representation of γµ matrices equation (23a) is equivalent to (9), while (23b) is
equivalent to the identity (12a).

Now the projection operator can be written as P4 = 1
4

(
3+γ5 − γ0γ3 + iγ1γ2

)
(and similar

formulae can be given for other projection operators P1, P2, P3), i.e. all equations (22), (23a),
(23b) are now given representation independent form. Let us also note that the projection
operator P4 commutes with two generators of Lorentz transformations γ0γ3 and γ1γ2 (and does
not commute with other generators), i.e. is invariant under boosts in x0x3 plane and rotations
in x1x2 plane. Accordingly, the three component equations are covariant with respect to such
Lorentz transformations only. Let us note finally that all three component equations describe
particles with definite mass and partly undefined spin.

5 Discussion

We shall now approach the problem of splitting the KDP equations for s = 1. Equations (5)
can be written in spinor form as [1]:

p Ḃ
A ζCḂ + p Ḃ

C ζAḂ = 2mηAC ,

pA
Ḃ
ζAḊ + pA

Ḋ
ζAḂ = 2mχḂḊ,

p Ċ
A χḂĊ + pC

Ḃ
ηAC = −2mζAḂ. (24)

It is possible to split the spinor form of the KDP equations (24) to get two equations for spinors
χḂḊ, ζAḂ and ηAC , ζAḂ:

p Ḃ
A ζCḂ = mηAC , ηAC = ηCA, pC

Ḃ
ηAC = −mζAḂ, (25)

pA
Ḃ
ζAḊ = mχḂḊ, χḂḊ = χḊḂ, p Ḋ

A χḂḊ = −mζAḂ, (26)

respectively. The splitting is possible due to spinor identities:

pC
Ḃ
p Ḃ

A = −δC
Apµp

µ, p Ḋ
A pA

Ḃ
= −δḊ

Ḃ
pµp

µ. (27)

Thus solutions of equations (25), (26) fulfill the KDP equations (24). The spinor equations (25),
(26) describe spin-1 bosons [13] where spinors ηCA, χḊḂ correspond to selfdual or antiselfdual
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antisymmetric tensors ψµν , respectively. Each of the above equations is covariant except from
space reflection, but both equations taken together are fully covariant. These equations written
in tensor form, βµpµΨ = mΨ, Ψ = [ψ01, ψ02, ψ03, ψ0, ψ1, ψ2, ψ3]

T where ψµν are selfdual or
antiselfdual antisymmetric tensors, with 7×7 matrices βµ fulfilling equation (18), are the Hagen–
Hurley equations [14,4].

The spinor form of either of the Hagen–Hurley equations (25), (26) can be splitted again to
obtain two 3×3 equations analogous to equations (9) and (10) and a Klein–Gordon equation [15].

Let us conclude with several general remarks. We have shown that spinor formalism discloses
internal structure of KDP equations which manifests itself by presence of redundant compo-
nents – there are special three-component solutions of these equations. Accordingly, the meson
spin-0 and spin-1 KDP equations split into pairs of three-component constituent equations, each
equation describing a particle with definite mass and partly undefined spin (all three-component
constituent equations discussed above are similar in a sense that their matrices ρµ fulfill the same
commutation relations (18) [11,4]) and in the case of spin-1 KDP equations an additional wave-
function fulfilling the Klein-Gordon equation is present. Moreover, solutions of the constituent
equations are subsolutions of appropriate Dirac equations and pairs of such Dirac equations,
corresponding to pairs of constituent equations, are charge conjugated one to another. This last
finding entitles us to conclude that Kemmer–Duffin–Petiau equations describe mesons as com-
posed from quark-antiquark pairs. These results are consistent with quark theory of mesons [16].

Let us stress that the separation of a meson into constituents is imperfect, since although
each of the constituent equations describes a massive particle, its Lorentz symmetry is broken.
This offers explanation of quark confinement different than in quantum chromodynamics where
linearly increasing potential energy between a quark and other quarks in a hadron is responsible
for confinement [17]). We hope that our results can also cast light on the problem of spin
crisis [18] since meson constituents in our theory have undefined spins. Let us assume that
proton constituents (quarks) have the same nature as the meson constituents of our theory. It
follows that the proton spin cannot be obtained as a sum of spins of its constituents since the
constituents have (partly) undefined spins.
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