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An attempt to create a system of the physical reality description applied to the space
rotations is undertaken. This approach extends the concept of the space symmetry for
the O(3) space rotation groups on basis of the evolution of the ideas of relativity and on
the suggestion of the space rotation equivalence. The basic space-time properties and the
physical object description from this point of view are considered. Stable space rotation
objects are found, which correlate with the quantum physics models of the elementary
particles, quarks and even nuclei. It is shown that the quantification is an essential part of
space rotation objects. The introduced ω-invariance hypothesis connects the space rotation
methodology with the quantum physics approach. In the framework of the proposed space
rotation approach, it is possible to get basic quantum mechanics equations, to interpret
basic postulates of quantum physics. It looks like postulates and limitations of quantum
physics are coming from the introduced Space rotation theory that can be a foundation of
the Unification theory.

1 Physical reality description

If we consider two rotating related to each other frames of reference in “empty”, “mathematical”
space, they seem to be equivalent and connected only to the observer. Otherwise, we need to
declare some absolute, initial frame of reference. From the other point of view, it is known that
physical laws are not invariant related to space rotations. Today, there are no known proven
contradictions to the relativity principle from the experiment. As far as we would like to stay
at the relativity principle, we need to extend this principle to space rotations. To overcome
these contradictions, we need to review the system of physical reality description (PhRS). We
will consider that the PhRS consists of four interconnected components. There are the physical
laws, physical objects, reference frames and space-time properties.

Indeed, some attempts to extend the relativity principle to the non-inertial reference frames
were made before [1]. Also the physical object in one references frame can be interpreted as
another physical object in other frame. For example, the plane electromagnetic wave may be
represented in the rotation frame as a set of the spherical waves [2]. So, some physical laws will
be valid in both frames, but it will be different physical laws for different physical objects.

2 Space rotation equivalence and metrics

We will consider three types of space rotations: the axis space rotation (ASR), the multiple
space rotation (MSR) and the sum space rotation (SSR).

We will call the space rotation (SR) of the K ′ reference frame related to K in time t with
the frequency ω about some fixed space axis as an axis space rotation (ASR). We will also use
notations: τ = ct, Ω = ω/c, where c is a speed of light. Space coordinates in K ′ will be primed
as (x′, y′, z′) = X ′. The coordinate transformation between the “initial” frame K and rotating
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one K ′ will be written as:

X ′ = X · (AASR
z

)±
,

(
AASR
z

)± =

 cos(ω t) ∓ sin(ω t) 0
± sin(ω t) cos(ω t) 0

0 0 1

 . (1)

Here (AASR
z )± is a transformation matrix of the ASR about z-axis in space (without loosing the

generality). At any time the functional determinant of the ASR transformation matrix is equal
to unit (detA = 1).

We will call the combination of ASR rotations with transformation matrices A1, A2, . . . , An
by definition as a multiple space rotation (MSR) and a sum space rotation (SSR), if the general
transformation matrices of these rotations AMSR and ASSR are expressed as:

AMSR =
n∏
k=1

Ak, ASSR =
n∑
k=1

Ak. (2)

Let the K frame rotate with respect to K ′ with the transformation matrix A1 and K ′′ frame
rotates related to K ′ with the transformation matrix A2. The transformation between K ′′ and

K will be expressed by the transformation matrix AMSR = {aij} = A1 · A2 =
n∑
k=1

a1
ika

2
kj . The

SRs in SSR are considered from the K reference frame.
The ASR is a particular case of the MSR. The MSR transformations is forming the rotation

group like O(3), where time t looks like some parameter. Let us denote this group as an extended
rotation group Ô(3).

Due to matrix properties, one can conclude that the transformation matrix of any space
rotation may be represented as a sum of products of the ASR transformation matrices:

X ′ = X ·ASR = X ·
{∑

i

AMSR
i

}
. (3)

Metrics. Standing on the position of relativity, we need to declare the equivalence of the SR
frames. It means that, for example, metrics can be introduced in any SR frame. For some space
rotation with the transformation matrix A between K and K ′ we will analyse the expression for
“interval” in the form:

ds′2 = c2dt2 − ‖dX ′‖2, (4)

where dX ′ is defined as dX ′ = d(XA) = dXA+XdA and ‖dX ′‖2 = dX ′ · dX ′T . So, for (4) we
will get:(

ds′SR

)2 = c2dt2 −XdAdATXT − dXAATdXT − {
dXAdATXT +XdAATdXT

}
. (5)

Metrics in rotation point. If we consider the interval (4) from the rotation point X ′
rp =

Xrp = (0, 0, 0) (the same in K and K ′), we will get for any time t:

‖∆X ′‖2 = X ′ ·X ′T = X ·AMSR(t)
[
AMSR(t)

]T ·XT = X ·XT = ‖∆X‖2.

It means, according to (4), that K and K ′ are invariant in rotation point and this invariance
has a local (or even point) character. The situation with points differed from the rotation one
is another.

The ASR metrics. Let us consider the transformation matrix
(
AASR
z

)± from (1) without
loosing the generality. From (5), we will get the expression:(

ds′ASR

)2 =
[
c2 − ω2

(
x2 + y2

)]
dt2 ∓ 2 (ydx− xdy)ωdt− (

dx2 + dy2 + dz2
)
, (6)
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that in cylindrical coordinates (ρ, φ, z) will be:(
ds′ASR

)2 =
(
c2 − ω2ρ2

)
dt2 ± 2ρ2ω dφ dt− ρ2 dφ2 − dρ2 − dz2. (7)

The metric tensor corresponding to the ASR interval has nondiagonal elements and, so, is
immeasurable. Physically, it is clear that on some distance from the rotation axis, the motionless
in K ′ object will have the speed in K equal to speed of light. It means that if we are moving
radially in K (dφ = 0), the term in braces at dt2 in (7) is positive when ρ2 < c2/ω2 and negative
when ρ2 > c2/ω2. So the surface, defined by the equation ρ2 = c2/ω2, divides the space into the
internal and external regions correspondingly. This equation with different frequencies ω defines
a set of cylindroids about the z-axis.

The physical object in K ′ from K will be observed as an object, localized in the internal
region, stable on its edge and freely movable along with the rotation axis. As far as the rotation
frequency with the same value may have two directions of rotation (may have positive or negative
sign), it may be two different types of these objects. One can say that this object will have an
additional characteristics from the K point of view. This characteristics looks like spin that,
within this approach, may be directed along or opposite the rotation axis. In elementary particle
physics, this model of the ASR physical object has some correspondence with neutrino, the
possibly massless particle with spin.

The MSR metrics. Let us consider the MSR AMSR = AASR
z (ω1)AASR

x (ω2)AASR
y (ω3), where

ω1, ω2 and ω3 are rotation frequencies. We will analyze the interval, averaged in time, from the
point of view of the observer in K and will consider that the period of time of the observation
is much longer than the period of any rotation included in the MSR. We will use the following
expression for “averaging”:

〈f〉t = lim
t→∞

1
2t

∫ +t

−t
f(t) dt.

On this way, for the MSR interval one can get:

〈(ds′MSR

)2〉t =
{
c2 −

[ (
x2 + y2

)
ω2

1 +
(

1
2
x2 +

1
2
y2 + z2

)
ω2

2 (8)

+
(

3
4
x2 +

3
4
y2 +

1
2
z2

)
ω2

3

]}
dt2 − 2 (ydx− xdy)ω1dt− dx2 − dy2 − dz2.

On the analogy of the ASR analysis, we can conclude that there are some regions localized in
space, defined by the equation g00 = 0, where the physical object will be stable in time from the
K point of view. In spherical coordinates (r, θ, φ), these stable regions will satisfy the equation:

r2 =
[(ω1

c

)2
sin2(θ) +

(ω2

c

)2
(

1 − 1
2

sin2(θ)
)

+
1
2

(ω3

c

)2
(

1 +
1
2

sin2(θ)
)]−1

. (9)

This equation for different frequencies describes ellipsoids in space. The conclusion about the
existence of the MSR stable regions is an additional characteristic to the “mathematical” model,
the “physical” aspect of the extended rotation group Ô(3).

Comparing expression (8) with (6), (7), one can see that although the MSR consists of a few
orthogonal ASRs, the MSR object, localized in space, anyway has some axis, picked out in space.
Note that it is some pseudo-axis, because it is some “averaged in time” axis. We can suppose,
as before, during the ASR object analysis, that it means that the MSR object also needs to have
the physical “spin”-characteristic. Here no limitations are seen to the spin direction related to
the direction of the particle movement (in contrast to the ASR object). That also corresponds
to the experimental data for the massive particles with spin. Such SR objects are similar to
fermions.
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The SSR metrics. We will consider the SSR with ASSR = AASR
z (ω1)+AASR

x (ω2)+AASR
y (ω3).

For the SSR, we need to use the expression (5). For the SSR interval with “averaging”, one can
get:

〈(ds′SSR

)2〉t =
{
c2 − [(

x2 + y2
)
ω2

1 +
(
y2 + z2

)
ω2

2 +
(
x2 + z2

)
ω2

3

]}
dt2 (10)

− 2 [(ydx− xdy)ω1 − (ydz − zdy)ω2 + (zdx− xdz)ω3] dt− 3
(
dx2 + dy2 + dz2

)
.

The SSR object is localized in space and, also, like the MSR object, has an ellipsoidal structure.
It is also possible to separate the space into the internal and external parts. The SSR objects
localized in space, apparently, are massive. But, generally, it is impossible to pick out any space
axis (even averaged) for the SSR object “as a whole”. SSR objects may be “complex”, i.e.
consisted of a few ASR or MSR objects, but their characteristics “as a whole” differ from the
characteristics of the included SR objects. For the SSR objects ‖X ′‖2 �= ‖X‖2 (with “averaging”
some additional coefficients will appear). It looks like due to the SSR metrics changing the inten-
sity of the “interaction” between the included ASRs is increasing, that, may be, will correspond
to electroweak and strong forces. The analogies with objects of chromodynamics (QCD) arise.
Within this approach, if we will continue the analogies between SR objects and particles, it is
possible to find some correspondence of the SSR objects with models of the particles consisted
of quarks (the SSR of ASR objects) and even with the nuclei (the SSR of MSR objects).

3 Quantum SR objects

If the SR object in K ′ exists, it needs to be a source of some “influence” in K, otherwise we
would not know about it. We consider, that this “influence” is well known in K (we do not
mean quantum physics here). Furthermore, this influence cannot be an energy source in K or
it has to be localized in space, overwise, the SR object would be a permanent power source or
it would be unstable.

We will analyze the stable and localized SR object. Let us assume that it is a source of some
influence u(X, t) in K. The source function ρ(X, t), corresponding to SR object, describing some
its property, will be equal to zero in external region and non-zero in its internal region G in K.
The wave-like influence u(X, t) needs to satisfy the wave equation:

∇2u(X, t) − 1
v2

∂2

∂t2
u(X, t) = −ρ(X, t). (11)

Here v is a speed of the influence wave, δ is the Dirac delta function, θ is the Heaviside staircase
function. Considering the SR object as a source of the wave-like influence with the frequency,
corresponding to the rotation frequency ω, and supposing k = ω/v (with v = c, k = Ω),
ρ(X, t) = P(X) exp(±ıωt), u(X, t) = U(X) exp(±ıωt) (ı is an imaginary unit), for U(X) we will
have the Helmholtz equation with corresponding fundamental solutions [3]:

∇2U(X) + k2U(X) = −P(X), (12)

E1(X) = ± 1
2ık

e±ık|X|, E2(X) = ∓ ı

4
H

(1),(2)
0 (k|X|), E3(X) = − 1

4π|X|e
±ı k|X|.

Note that this equation gives the steady-state solutions. The question of the source function
expression that we have used, is quite serious, it needs the ω-invariance hypothesis, which is
introduced and considered in the next Section 4.

The 1D case. In the one-dimensional case, with P(x) = δ(x− a)± δ(x+ a), the solution of
the equation (12) can be represented as:

U(x) = ±
(
e±ık|x+a| ± e±ık|x−a|

)
/(2ık).
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Figure 1. The 1D SR object establishing (even-mode).

In the “internal” (−a < x < a) and the “external” regions (x < −a) and (x > a) these solutions
can be represented by even and odd modes:

U in
even(x) = ± 1

ık
e±ıka cos(kx), U in

odd(x) = ±1
k
e±ıka sin(kx),

U ex
even(x) = ± 1

ık
e∓ıkx cos(ka), U ex

odd(x) = ±1
k
e∓ıkx sin(ka).

It follows from here that with ka = −π/2 + πn for even and with ka = πn for odd modes,
where n is natural, the SR object influence in “external” regions will be equal to zero at any
time, while it will not be zero in the “internal” region. The analysis of the establishing of
the found study-states of the SR object by equation (11) shows (see Fig. 1) that there exist
objects spreading out the SR object with the speed of influence waves. These additional objects
represent the wave trains. The number of trains corresponds to the respective train number of
the steady-state object. So one can tell about the “families” or “classes” of the steady-state
SR objects and corresponding moving objects. Analogies with the neutrino families are very
transparent.

The 3D case. In the three-dimensional case, with P(x) = δ(r − a), it is possible to get the
steady-state solution of the equation (12) that can be represented as (where k = πn/a, n ∈ N ):

U(r) =
a

kr
sin[k(r − a)].

So, we have found that the SR object needs to satisfy to some quantification conditions. We will
call it as a Quantification principle. Remarkable, that the quantification takes place without
any “external” force field. See also [5].

DeBroglie wave. The SR object influence, taking into account the quantification condition
kn = ωn/v, may be represented as:

u(X, t) =
∑
n

U(ωn, X) exp(ıωnt). (13)

This expression looks like Fourier expansion of the u(X, t). So, the following Fourier expansion
properties are valid for influence of the SR object:

U(ωn, X) =
ω0

2π

∫ π/ω0

−π/ω0

u(X, t)eıωntdt,
〈
u2(X, t)

〉
t
=
∑
n

|U(ωn, X)|2 .
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We can consider the expression (13) in an inertial to K reference frame KL, using the Lorentz
coordinate transformation (without losing the generality XL = (x, y, zL), γ = 1/

√
1 − β2,

β = V/c), that leads to:

uL
(
XL, tL

)
=
∑
n

B(ωn, XL)eıωn[γ(tL−βzL)−tL], (14)

where B = U(ωn, XL)eıωntL and (14) looks like the de Broglie wave, corresponding to particle.
Together with the observed Fourier expansion properties, it may have the probabilistic interpre-
tation. Note, that in (14) influence of the part eıωntL on the particle behavior is neglected.

4 Description of SR frames

Let us consider the normalized MSR with the periodical rotation matrix AMSR = A(t) = A(t+
2πn/ω), where n is integer, and fix two events (t1, X1) and (t2, X2). For corresponding space
points X ′

2 and X ′
1 in K ′, one can get by the SR definition:

∆X ′
|2πn/ω = X ′

2 −X ′
1 = X2A(t2) −X1A(t1) = ∆X ·A|2πn/ω. (15)

If the SR matrix is normalized (detA = 1), the distance between two space points in K and K ′

is found to be equal to each other:

‖∆X ′‖2
|2πn/ω = ‖∆X‖2. (16)

For any fixed frequency ω, the time points t2 = t1 + 2πn/ω create the numerable infinite
aggregate Λ : {t0 + 2πn/ω}∞n=0 on the t-axis. The rotation frequency ω is the initial parameter
of this aggregation. On Λ the equality (16) is true, and, consequently, the interval (4), as it was
defined in Minkowski space, is invariant in K and K ′. We will call by definition that rotating
frames K and K ′ are ω-invariant. It means that SR frames on this infinite aggregate look like
Lorentz-invariant and so, we will consider, that they are measurable on Λ. The frequency ω
defines the scale between two reference frames K and K ′. On this approach, this parameter
seems and needs to be very important in the physical object description in these frames.

Further, let us a physical object (some of its property) is described in K ′ by the function
ψ′(X ′, τ) and in K by function ψ(X, τ). On Λ these functions are measurable, because the
interval (4), as it was defined in Minkowski space, is invariant in K and K ′, and one can write
the condition expression, connecting these functions:

ψ(X, τ)|2πn/ω =
∑
l

[
ψ′
l(X

′, τ)
∏
ml

exp(±ımlΩτ)

]
, (17)

because for any natural l and integerml, exp(±ımlΩτ)|2πn/ω = 1, where ψ′(X ′, τ) =
∑
l

ψ′
l(X

′, τ),

and in these points X ′
|2πn/ω = X.

Furthermore, we will replace Λ by the real t-axis. It means that we are also replacing the
discrete set on X and X ′, so that X = X ′. Finally, we have got the expression, connecting
functions ψ in K and ψ′ in K ′ on Λ:

ψ(X, τ) =
∑
l

[
ψ′
l(X, τ)

∏
ml

exp(±ımlΩτ)

]
. (18)

At any, even very high values of ω, this approximation may be quite accurate, but always not
complete.
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Following these assumptions, we can conclude that the introduced extended Ô(3) group due to
ω-invariance hypothesis transforms to the usual O(3) group and also the Minkowski space metrics
is valid for this object. This is already enough to get the basic quantum mechanics equations such
as Klein–Gordon–Fock, Schrödinger and Dirac in the fashion standard in quantum theory [4].

The SR theory can explain a lot of difficulties and postulates of the quantum theory. We will
illustrate it by obtaining the Klein–Gordon–Fock equation for a scalar particle without spin in
the “SR theory fashion style”.

KGF equation. For simplicity, we will analyze the case l, ml = 1 of expression (18):

ψ(X, τ) = ψ′(X, τ) exp(±ıΩτ). (19)

Here we have got the expression (19), we have already used in Section 3 for source function. So,
it has a meaning of the SR frames function transformation.

Remind that on Λ X = X ′ and we can consider ∇X = ∇X′ . So, the Lorentz invariant second-
order differential operator, called the d’Alembertian operator, will be invariant in frames K
and K ′:

� =
∂2

∂τ2
−∇2

X =
∂2

∂τ2
−∇2

X′ = �′.

We are able to apply the d’Alembertian operator to both parts of the Equation (19). It will
lead to equation:

1
ψ(X, τ)

�ψ(X, τ) =
1

ψ′(X ′, τ)
�′ψ′(X ′, τ) − Ω2 + 2ıΩ

1
ψ′(X ′, τ)

∂ψ′(X ′, τ)
∂τ

. (20)

The third term in the right-hand side may be neglected in comparison with the second one in
case of the stable particle, stable, at least, in comparison with the period of rotation T = 2π/ω:
Ω 	

∣∣∣ 1
ψ′
∂ψ′
∂τ

∣∣∣. If the physical object in K ′ (it may be, for example, an electromagnetic wave)
satisfies the equation �′ψ′(X, τ) = 0, then supposing Ω = mc/�, one can get from (20) the
Klein–Gordon–Fock equation:

�ψ

ψ
+
m2c2

�2
= 0. (21)

The equation (21) is valid for any inertial to K reference frames due to the Lorentz invariance
of the d’Alembertian operator, that was directly shown in [5]. Obtaining of the Schrödinger
equation was also shown in these papers, which is the non-relativistic approximation to the
Klein-Gordon equation. As far as the ω-invariance gives the necessary symmetries, it is possible
to obtain the Dirac equation by the usual way [4]. Note that (16) is not satisfied for SSR, so
equations, created for SSR, apparently, will correspond to the QCD, QFT equations.

From the SR point of view, the equation (21) contains a new idea – an idea of connecting
the physical object properties in different rotating reference frames. It is a consequence of the
declared SR equivalence principle.

The “Einstein’s formula” for the SR. The invariant E2/c2 − �p · �p = m2c2 given by the
energy-momentum 4-vector of a particle pµ = (E/c, �p) in Quantum mechanics corresponds to
the KGF equation. An electromagnetic wave in K ′ gives for this invariant E′2/c2 − �p ′ · �p ′ = 0.
For the stable and localized object in K (�p = �0) this invariant will be E2/c2 = m2c2, so from (20)
we can get the well-known Einstein’s formula:

E2/c2 = C(Ω) = m2(Ω)c2. (22)

Note that the “influence” of the SR object (Section 3) may be interpreted as an additional mass
to (22), but it has another origin and can be “separated” from the real rest mass.
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5 Space rotation theory

It seems that the attempt to create the system of the physical reality description, undertaken
in this paper, was quite successful and we may declare the result as a Space rotation theory.
The SR theory is based on the SR equivalence, the quantification principle and the ω-invariance
hypothesis.

The SR equivalence principle is based on the evolution of the ideas of relativity and on the
suggestion of the space rotation equivalence, extends the conception of the space symmetry of
the O(3) space rotation groups. This extended rotation group Ô(3) adds some very important
physical characteristics to space-time and SR object descriptions. The stable-state objects,
correlated with known quantum physics objects, are found.

The quantification principle is based on the usual energy conservation law for found SR
objects. It does not need any additional postulates to explain the quantum properties of existing
particles and fields.

The ω-invariance hypothesis makes SR frames measurable, but, of course, with some limita-
tions. These limitations are coming from the SR theory; they are not postulated or introduced.
They are in a good agreement with the quantum physics postulates and paradoxes.

From the SR theory point of view, the Quantum physics is an effort of the approximate
description of the immeasurable SR systems, because in quantum physics the numerable infinite
aggregate on t-axis is replaced by the continuous t-axis. At any, even very high values of ω,
this approximation may be quite accurate, but always not complete. On this approach, it
becomes clear, that the ω-invariance is the reason of the uncertainties in quantum physics,
its incompleteness and formalism [6]. M. Gell-Mann [7] characterized the quantum physics as
a discipline “. . . full of mysteries and paradoxes, that we do not completely understand, but
are able to use. As we know, it perfectly operates in the physics reality description, but as
sociologists would say, it is an anti-intuitive discipline. The quantum physics is not a theory,
but limits, in which, as we suppose, any correct theory needs to be included”. Now, we can
clearly see it from SR theory point of view.

All these facts make us declare the “initial”, basic origin of the SR theory in comparison with
the quantum physics. We may suppose, that “new” interactions, declared in quantum physics,
such as strong or electroweak, are reflections of the “usual” forces, existing in rotating frames,
to the observer frame and also “influence” of the SR objects in our frame. This is a way to the
Unification of these forces.
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