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The implementation of a vibronic coupling in the context of trapped ions, and its diagona-
lization are reported. The specific spin-boson-like Hamiltonian model is studied exploiting
its symmetries and supersymmetries. Applications are discussed.

1 Introduction

Trapped ions provide an interesting physical scenario wherein fundamental aspects of quantum
mechanics may be tested and useful applications in quantum computation may be realized [1].

Generally speaking, a time dependent quadrupolar electric field is responsible for a charged
particle dynamics which may be effectively described as the motion of a point into a quadratic
potential [2]. When the harmonically confined particle is an ion, the system we obtain possesses
both bosonic and fermionic degrees of freedom, the first corresponding to the ion center of mass
motion, the second describing the atomic internal state, i.e. the electronic configuration. In
most of the cases, in trapped ion dynamics only two atomic levels are involved, making the
Pauli operator two-level system description effective.

Once the ion has been confined, acting upon it via laser field it is possible to implement
vibronic couplings (i.e. involving both bosonic and fermionic degrees of freedom) practically
at will [3]. Unfortunately, sometimes, the vibronic coupling problem is not solvable even if
implementable.

The study of symmetries plays a central role in the analysis of trapped ion dynamical prob-
lems. Indeed, in most of the cases, symmetries provide an elegant and effective way for finding
Hamiltonian eigensolutions.

In this paper we describe a trapped ion physical situation described by a Hamiltonian model
possessing interesting and useful symmetries. In detail, conservation of total excitation num-
ber and rotational invariance are found. Moreover a Second Order Hidden Supersymmetry is
discovered. Symmetry based diagonalization provides the possibility of writing down the time
evolution concerning simple initial conditions. Interesting nonclassical behaviors like the gene-
ration of GHZ [7] states are predicted.

2 The physical system

The physical system on which we focus our attention consists in a two-level ion confined into
a three dimensional isotropic trap, described by the unperturbed Hamiltonian

Ĥ0 =
�ωA
2
σ̂3 + �ωT

∑
j=x,y,z

â†j âj ,
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where ωA is the relevant atomic Bohr frequency, σ̂3, third component of the Pauli vector, de-
scribes the two level atomic system, ωT is the common frequency of the degenerate trap whose
annihilation (creation) operators are âj (â†j). The total system of Bohr frequencies involving
atomic transitions are given by

ω = ωA + (mx +my +mz)ωT ,

where mx, my, mz are relative numbers. Considering a one-dimensional dynamics, the frequency
ω = ωA+mωT is referred to as the carrier, a red sideband or a blue sideband depending on m = 0,
m < 0 or m > 0 respectively.

2.1 Implementation of the Hamiltonian model

Acting upon the system via a laser field of amplitude �E0,x, propagating along x and tuned to
the second red sideband, an interaction term is added to the Hamiltonian:

Ĥ
(S)
int = −�d · �E(�r),

where �d = �d±σ̂+ + �d∗±σ̂− is the two-level restriction of the atomic dipole operator and �E(�̂r) =
�E0,xe

i(kxX̂−ωLt) + �E∗
0,xe

−i(kxX̂−ωLt), X̂ being the trapped ion center of mass position operator,
describes the field.

Passing to the interaction picture and expanding the exponentials using the Baker–Campbell–
Hausdorff formula, the interaction Hamiltonian in the Rotating Wave approximation is

Ĥint = −�gx


e− η2

L
2

∞∑
s,j=0

(−iηx)s+j
s!j!

(â†x)
j âsxe

i(j−s)ωT te−i(ωA−ωL)tσ̂−


+ h.c., (1)

where gx ≡ �d± · �E0,x, ηx ≡ kx
2π

√
�

µωT
, µ being the mass of the ion is the so called Lamb–Dicke

parameter ηx expressing the ratio between the spatial dimensions of the bosonic ground state
wave function and the laser field wavelength, and hence governing the influence of the e.m. field
gradient to the laser-driven trapped ion dynamics.

Retaining only stationary terms in equation (1), and observing that

ei(j−s)ωT te−i(ωA−ωL)t = e−i(j−s−2)ωT t

one obtains

Ĥint ≈ −�gx


e− η2

x
2

∞∑
j=0

(−iηx)2(j+1)

j!(j + 2)!
(â†x)

j+2 âjx


 σ̂− + h.c. (2)

In the so-called Lamb–Dicke limit, meaning that ηx � 1, the Hamiltonian in equation (2)
may be cast in the form

Ĥint ≈ �γx
[
(â†x)

2σ̂− + (âx)2σ̂+

]
with γx ≡ gxe

− η2
x
2
η2
x

2
.

Simultaneously acting with three laser fields tuned to the second red sideband and directed
along the three x, y and z axis directions one obtains

Ĥint ≈ �
[
γxâ

2
x + γyâ

2
y + γzâ

2
z

]
σ̂+ + h.c.

Suitably adjusting the laser field amplitudes and the Lamb–Dicke parameters one can set
equal the three γ-parameters, obtaining

Ĥint ≈ �γ
(
â2
x + â2

y + â2
z

)
σ̂+ + h.c., (3)

where γ ≡ γx = γy = γz.
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2.2 Symmetries

The interaction picture Hamiltonian model in equation (3) describing two boson trimodal
Jaynes–Cummings-like transitions, possesses interesting symmetries useful in view of Ĥint diago-
nalization.

First of all observe that the total excitation number operator is conserved during the dyna-
mics. Indeed, the operator

N̂ =
∑

j=x,y,z

â†j âj + σ̂z + 1

is a constant of motion, meaning that the phase changes

âj → eiφâj , σ̂± → e∓i2φσ̂±

leave unchanged the Hamiltonian operator.
Rotational invariance is the second important symmetry. In fact the center of mass angular

momentum does commute with Ĥint:

[Ĥint, �̂L] = �0,

where the three components of �̂L are given by

L̂k = i(â†j âl − â†l âj) (j, l, k = x, y, z and cyclic).

The operators N̂ , L̂2, L̂z all commute each other and with Ĥint. It is worth noting that such
three operators also commute with the unperturbed Hamiltonian Ĥ0, so that they really are
constants of motion, in the sense that no explicit time dependence has been introduced in the
passage to the interaction picture.

3 Hamiltonian model eigensolutions

To solve the interaction picture Hamiltonian eigensolution problem

Ĥint|ψ〉 = Eψ|ψ〉
observe first of all that

Ĥ2
int = (�γ)2

[
N̂2 + N̂ − L̂2

]
. (4)

Such a formula determines, up to a sign, the eigenvalues of Ĥint as

|en,l| = �γ
√

[n(n+ 1) − l(l + 1)],

n = 2N+L+ 5
2 + σ̂z and l being the quantum numbers related to the excitation number operator

and to the square of the angular momentum, N, l = 0, 1, . . ., σ̂z = ±1.
In addition to the individualization of the eigenvalue structure, equation (4) strongly suggests

the existence of a Foldy–Wouthuysen-like transformation able to diagonalize the Hamiltonian
model [4,5]. Such a circumstance is related to a Second Order Hidden Supersymmetry the system
possesses.

Generally speaking, a Hamiltonian ĤS is said to be supersymmetric if two operators Q̂ and Q̂†

exist satisfying the following algebra [6]

[ĤS , Q̂] = [ĤS , Q̂
†] = 0, {Q̂, Q̂†} = ĤS , {Q̂, Q̂} = {Q̂†, Q̂†} = 0. (5)
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Starting from this, it is possible to introduce the Hermitian supercharges

Q̂+ = Q̂+ Q̂†, Q̂− = i
(
Q̂− Q̂†) (6)

satisfying the relation

Q̂2
− = Q̂2

+ = ĤS . (7)

Usually, supersymmetry is used to solve the ĤS Hamiltonian eigenvalue problem or at least to
predict the specific degeneration of the Hamiltonian spectrum. Nevertheless, if our attention is
focused on one of the supercharges, the knowledge of relations in equation (5) and (7) proves to be
useful. More in detail, a unitary transformation having Q̂− as generator is able to diagonalize Q̂+

(partially or completely depending on the specific problem) and vice versa.
Since in our case we find an operator K̂− = i

{[
â2
x + â2

y + â2
z

]
σ̂+ − h.c.

}
such that Q̂2− ≡(

�γK̂
)2 = Ĥ2

int we can set Q̂+ = Ĥint, Q̂− = �γK̂.
The unitary operator

Û = exp

(
−π

4
Q̂−
|Q̂−|

)
= exp


− πK̂

4
(
N̂2 + N̂ − L̂2

)1/2


 . (8)

transforms Ĥint as follows:

Û †ĤintÛ = �γ
(
N̂2 + N̂ − L̂2

)1/2
σ̂3. (9)

Observe the accordance of equation (9) with equation (4) due to σ̂2
3 = 1, taking in mind that

the unitary operator in equation (8) does not transform the square of Ĥint despite Ĥint itself is
modified. Hence squaring equation (9) gives exactly equation (4), which is not sensible to the
anti-transformation induced by Û †.

Standard algebraic manipulations leading to the expansion of the angular momentum eigen-
functions in the Fock basis complete the diagonalization procedure.

4 Applications and conclusive remarks

The investigated features of the Hamiltonian Model Ĥint lead to the possibility of inducing
quantum dynamics satisfying certain symmetry conditions, for instance, rotational invariance.
As an example assume the system prepared in the vacuum vibrational state and in the excited
atomic level:

|ψ(t = 0)〉 = |0, 0, 0,+〉, (10)

where the first three numbers refer to the x, y, and z vibrational excitation numbers, while the
sign indicates the atomic ground (−) or excited (+) state.

In the light of the previous results, it is straightforward to find that once the laser interaction
is turned on the system evolves in the following way:

|ψ(t)〉 = cos
(√

6γt
)|0, 0, 0,+〉 − i√

3
sin
(√

6γt
)
[|2, 0, 0,+〉 + |0, 2, 0,+〉 + |0, 0, 2,+〉] . (11)

After a π
2 -pulse, i.e. at the instant of time t0 such that

√
6γt0 = π

2 , up to a global phase
factor, the system is found to be in the GHZ state [7]

|ψ(t0)〉 =
1√
3
|2, 0, 0,+〉 + |0, 2, 0,+〉 + |0, 0, 2,+〉.
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The importance of such a state relies in its applications in the study of the Bell’s inequality
violations [7]. In passing we observe that, as expected, starting from the spherically symmetric
wavefunction given in equation (10), the dynamics preserves such a symmetry at any instant of
time. As another example consider an non-spherically symmetric initial state which distinguishes
the z-direction from the other two. Let be

|ψ(t = 0)〉 = |0, 0, 2,−〉.

The relevant time evolution is given by

|ψ(t)〉 =
1
3
[
cos
(√

6γt
)

+ 2
]|0, 0, 2,−〉 +

1
3
[
cos
(√

6γt
)− 1

]
[|2, 0, 0,−〉 + |0, 2, 0,−〉]

− i√
3

sin
(√

6γt
)|0, 0, 0,+〉. (12)

Due to the fact that {|2, 0, 0,−〉, |0, 2, 0,−〉, |0, 0, 2,−〉, |0, 0, 0,+〉} is an excitation number of
invariant subspace, the states involved in the two considered dynamics, the ones in equation (11)
and equation (12), are the same. Nevertheless, the weights are significantly different. In parti-
cular, as well and easily seen, the initial symmetry breaking is preserved by the time evolution.
Indeed, for instance, despite |0, 0, 0,+〉 appears, no instant of time exists when the state |ψ(t)〉
coincides with it.

Summarizing, in this paper we have described the trapped ion physical scenario and focused
our attention to a specific experimental configuration (three lasers suitably tuned and so on)
corresponding to a second order vibronic Jaynes–Cummings like interaction model.

The Hamiltonian exhibits interesting and useful symmetry properties: total excitation num-
ber conservation, spherical invariance and a hidden supersymmetry. Exploiting all such features
we succeed in finding Hamiltonian Model eigensolutions and, hence, in describing the dynamics
it is responsible for, with respect to some simple initial conditions.

As expected, the degree of spherical symmetry is found to be preserved during all the time
evolution. Moreover, in correspondence to a vacuum vibrational state initial state, a GHZ state
is obtained.
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