
Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 2, 881–885

Generation of Glauber Coherent State Superpositions

via Unitary Transformations

Antonino MESSINA, Benedetto MILITELLO and Anna NAPOLI

INFM, MIUR and Dipartimento di Scienze Fisiche ed Astronomiche dell’Universitá di Palermo,
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A unitary transformation mapping the vacuum state of a harmonic oscillator into a norma-
lized superposition of two arbitrary Glauber coherent states is reported. Interesting features
of the transformation are discussed. Generalizations to the superposition of N coherent
states are discussed.

1 Introduction

Since their introduction by Glauber in 1963 [1], coherent states have been deeply studied [2]
due to the fact that, in some sense, the statistical properties related to the first momenta
of their Fock distribution exhibit features interpretable in the realm of classical probability
theory. Of course the quantum nature of a coherent state, and ultimately the granularity of
the energy of a quantum harmonic oscillator, becomes more and more evident when higher
momenta of the Fock distribution are considered. It is of relevance that coherent states of
both a mechanical quantum oscillator or a quantized mode of an electromagnetic resonator
may be currently proposed in accordance with well-defined protocols. Even more interesting is
the fact that they provide the effective possibility of realizing interesting experiments able to
bring to the light peculiarities of quantum mechanics. In particular, the very famous gedanken
Schrödinger Cat State (SCS) experiment [3] consisting in entangling a microscopic quantum
object (an atom) with a macroscopic one (a cat) has been realized. No unfortunate feline has
been tortured! Trapped ions have been indeed exploited. In fact, such systems provide the
possibility of testing fundamental quantum physics aspects giving at experimentalist’s disposal
compound quantum systems consisting of a few-level atomic part and a tri-dimensional harmonic
oscillator describing the center of mass motion of an ion confined into a Paul trap. Suitably
acting upon the system with Raman lasers it is possible to engineer the Schrödinger Cat-like
state [4, 5]

|ψ〉 =
1√
2

(|α〉 |−〉 + |−α〉 |+〉) ,

where |±〉 indicate two internal atomic states and |±α〉 are two macroscopically well distinguish-
able harmonic oscillator configurations, i.e. opposite Glauber coherent states.

Today the definition of SCS is extended to all those situations wherein two macroscopically
distinguishable classical states are quantum coherently simultaneously present [6]. Hence the
purely vibrational normalized quantum superposition

|φ〉 = N(α) (|α〉 + |−α〉) (1)

is referred to as a SCS. Here N(α) is the normalizing constant1. It is worth to stress that,
apart from semantic questions, the superposition in equation (1) is of relevance in the study of
fundamental aspects of quantum mechanics.

1Due to the non-orthogonality of coherent states, in most of the cases N(α) is not trivially 1√
2
.
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In this paper we present, from the mathematical point of view, the construction of a new uni-
tary operator able to generate coherent superpositions of Glauber coherent states when applied
to the vibrational vacuum. In particular, dynamical configurations like that in equation (1) may
be generated. The operator, initially related to the generation of two coherent states, will be
generalized to the case of more than two such states. It is worth noting that, acting with such an
operator upon states different from the vacuum but possessing appropriate spatial symmetries,
it is possible to generate a wider class of superpositions of translated wave function.

The unitary operator introduced here may be used to solve elegantly and effectively those
variational problems involving superpositions of Glauber coherent states as candidate solution.

2 Generation of coherent state superpositions

The physical system we consider is a harmonic oscillator of frequency ω described by the Hamil-
tonian

Ĥ = �ω

(
â†â+

1
2

)
,

where â and â† are the annihilation and creation operators respectively. Its eigenstates |n〉, n be-
ing a non-negative integer, describe a spectrum having equidistant levels: Ĥ |n〉 = �ω

(
n+ 1

2

) |n〉.
It is well known that, applying a displacement operator to the vacuum state, |0〉, one obtains

a so called Glauber coherent state

|α〉 ≡ D̂ (α) |0〉 ≡ eα
∗â−αâ† |0〉 ,

where α is a complex number whose real and imaginary parts return the mean values of the
position and momentum operators respectively. Observe that, since the vacuum state realizing
a non-squeezed minimum position-momentum uncertainty is rigidly translated, the minimal
uncertainty is preserved.

Consider now the observable

Π̂ = cos
(
πâ†â

)

which is a Hermitian and unitary operator commuting with Ĥ and satisfying the following
relations:

Π̂ |n〉 = (−1)n |n〉 (2)

and

Π̂âΠ̂ = −â, Π̂â†Π̂ = −â†.
Due to equation (2), Π̂ is called Parity operator. Starting from this point we introduce the

operator

D̂ (α) Π.

It turns out that, like Π̂, it is both unitary, being the product of two unitary operators, and
Hermitian, as easily verifiable:

[
D̂ (α) Π

]† = ΠD̂ (α)† = ΠD̂ (−α) = ΠD̂ (−α) Π2 = D̂ (α) Π.

Moreover, the square of such an operator is the Identity. Indeed
[
D̂ (α) Π

]2 = D̂ (α) ΠD̂ (α) Π = D̂ (α) D̂ (−α) = 1̂. (3)
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Taking into account all such properties, we define the following two-parameter unitary ope-
rator:

Û (λ, α) ≡ eiλD̂(α)Π, (4)

λ being a real number.
In consideration of equation (3), Û (λ, α) may be cast in the form

Û (λ, α) ≡
∞∑

k=0

(
iλD̂ (α) Π

)k

k!

=
∞∑

k=0

(iλ)2k

(2k)!
1̂ +

∞∑
k=0

(iλ)2k+1

(2k + 1)!
D̂ (α) Π (5)

and finally

Û (λ, α) = cosλ 1̂ + i sinλ D̂ (α) Π. (6)

The action of such an operator on a state we shall refer to as the state of reference returns
a normalized superposition of the original wave-packet and its rigid translation of α = x+ ip in
the phase space, x and p being position and momentum expectation value changes. In particular,
taking the vibrational vacuum |0〉 as state of reference one obtains a normalized superposition
involving the ground state itself and the coherent state |α〉:

Û (λ, α) |0〉 = cosλ |0〉 + i sinλ |α〉 . (7)

It is worth recalling that |0〉 may be thought of as a coherent state corresponding to the
classical situation wherein the harmonically confined particle is at rest in the origin. Observe also
the peculiarity of the state in equation (7) consisting in the fact that the normalized superposition
has two weights expressible as sines and cosine of the same number, i.e. it looks like |0〉 and |α〉
are orthogonal2.

In order to obtain a linear combination of two arbitrary Glauber coherent states, it is enough
the subsequent action of another displacement operator, D̂ (β):

D̂ (β) Û (λ, α) |0〉 = cosλ |β〉 + iei�(αβ∗) sinλ |α+ β〉 . (8)

Hence the unitary operator

V̂ (α, β, λ) ≡ D̂ (α) Û (λ, β − α)

= cosλD̂ (α) + iei�(αβ∗) sinλD̂ (β) Π̂ (9)

applied on the vacuum state generates the normalized superposition

V̂ (α, β, λ) |0〉 = cosλ |α〉 + iei�(αβ∗) sinλ |β〉 . (10)

Such a result may be easily extended taking as state of reference any eigenfunction of the
Parity operator. Indeed, let |ψ0〉 be a Π̂ eigenstate meaning that ψ0(x) ≡ 〈x| ψ0〉 is an even or
odd function. The action of V̂ (α, β, λ) on such a state generates

V̂ (λ, α, β) |ψ0〉 = cosλD̂ (α) |ψ0〉 + (−1)σiei�(αβ∗) sinλD̂ (β) |ψ0〉 , (11)

σ being the parity of ψ0(x).
2Generally speaking such a circumstance is realized only in correspondence to a specific phase correlation

between the two coefficients involved in the coherent superposition. To this end observe that, given the state |ψ〉 =

c1 |α1〉+ c2e
iφ |α2〉 with c1, c2, φ real numbers, the modulus 〈ψ| ψ〉 = |c1|2 + |c2|2 + c1c2e

− |α−β|2
2 �

{
eiφei�(α∗β)

}
may be expressed as

(
c21 + c22

)
only if φ = π

2
−� (α∗β) + kπ.
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In the case when α and β are real and |ψ0〉 is a localized wave function centered in the origin,
the state in equation (10) turns out to be the superposition of two localized packets centered in
x = α and x = β:

〈x| V̂ (λ, α, β) |ψ0〉 = cosλψ0 (x+ α) + i sinλψ0 (x+ β) . (12)

3 Superpositions of more than two coherent states

The question of how the number of coherent states in the superposition can be increased imme-
diately arises. To this end the subsequent action of two V̂ unitary operators is considered. The
relevant transformation is given by

V̂ (2) (λ, µ, α1, α2, α3, α4) ≡ V̂ (λ, α1, α2) V̂ (µ, α3, α4) (13)

which may be cast in the form

V̂ (2) (λ, µ, α1, α2, α3, α4) =
[
cosλD̂ (α1) + ie�(α1α∗

2) sinλD̂ (α2) Π̂
]

×
[
cosµD̂ (α3) + ie�(α3α∗

4) sinµD̂ (α4) Π̂
]
. (14)

Taking into account properties of Π̂, one obtains

V̂ (2) (λ, µ, α1, α2, α3, α4) = cosλ cosµ eiφ13D̂ (α1 + α3) + cosλ sinµ eiφ14D̂ (α1 + α4) (15)

+ sinλ sinµ eiφ24D̂ (α2 − α4) + sinλ cosµ eiφ23D̂ (α2 − α3) Π̂,

where φjk are suitable quantum phases.
The four coherent states obtained when V̂ (2) is applied upon |0〉 are

|α1 + α3〉 , |α1 + α4〉 , |α2 − α3〉 , |α2 − α4〉 .

Despite appearances, we do not have four independently parametrically changeable states.
Indeed, to generate the arbitrary quadruplet

|c1〉 , |c2〉 , |c3〉 , |c4〉

one has to choose the α-parameters satisfying the following equation system:

α1 + α3 = c1, α1 + α4 = c2, α2 − α3 = c3, α2 − α4 = c4

which, unfortunately, has a vanishing determinant:

det




1 0 1 0
1 0 0 1
0 1 −1 0
0 1 0 −1


 = 0.

Nevertheless, the usefulness of the transformation given by equation (15) remains valid, in
particular considering the fact that it can be exploited to generate threefold Schrödinger Cat-like
states. More in detail

V̂ (2) (λ, µ, 0, 0, 0, α) |0〉 = cosµ
(
cosλ eiφ13 + sinλ eiφ23

)
|0〉

+ cosλ sinµ eiφ14 |α〉 + sinλ sinµ eiφ24 |−α〉 . (16)
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In this equation we have three equidistant wave packets corresponding to the same wave
function centered in the three positions x = 0,±�{α}. A rigid translation of this state is
obtained considering α1 = α3 = 0, α2 = 2α and α4 = α: V̂ (2) (λ, µ, 0, 2α, 0, α). In fact in this
case one has a linear combination of |0〉, |α〉 and |2α〉.

The method reported here may be extended to the case of a superposition involving 2N

coherent state just considering

V̂ (N) ≡
N∏

k=1

V̂ (λk, αk, βk) .

Of course, like in the case N = 2, the number of independently determinable states is smaller
than 2N .

4 Conclusive remarks

In this paper we have presented the construction of a unitary operator, V̂ which in some sense
behaves like a superposition of phase space translators. Such a circumstance, joint with the well
known definition of Glauber coherent states as displaced vacuum, has provided an effective and
elegant expression for an arbitrary two coherent state superposition. The subsequent application
of two such unitary operators produces a four coherent state superposition and so on following
the law 2 raised to the number of applications of V̂ , which is larger than the number of coherent
state which may be independently parametrically changed at will.

As a conclusive remark we point out that the possibility of considering a generic linear
combination of Glauber states via a unitary transformation of the vibrational vacuum leads
to a more elegant and effective way to deal with those variational problems having such wave
functions as candidate solutions.
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