
Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 2, 737–743

Family Replicated Gauge Group Models

C.D. FROGGATT ∗, L.V. LAPERASHVILI †, H.B. NIELSEN ‡ and Y. TAKANISHI §

∗ Department of Physics and Astronomy, Glasgow University, Glasgow G12 8QQ, Scotland
E-mail: c.froggatt@physics.gla.ac.uk

† ITEP, 25 B. Cheremushkinskaya Str., 117218 Moscow, Russia
E-mail: laper@heron.itep.ru

‡ The Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
E-mail: hbech@alf.nbi.dk

§ The Abdus Salam ICTP, Strada Costiera 11, 34100 Trieste, Italy
E-mail: yasutaka@ictp.trieste.it

Family Replicated Gauge Group models of the type SU(n)N × SU(m)N , (SMG)3 and
(SMG × U(1)B−L)3 are reviewed, where SMG = SU(3)c × SU(2)L × U(1)Y is the gauge
symmetry group of the Standard Model, B is the baryon and L is the lepton numbers,
respectively. It was shown that Family Replicated Gauge Group model of the latter type fits
the Standard Model fermion masses and mixing angles and describes all neutrino experiment
data order magnitudewise using only 5 free parameters – five vacuum expectation values of
the Higgs fields which break the Family Replicated Gauge Group symmetry to the Standard
Model. The possibility of [SU(5)]3 or [SO(10)]3 unification at the GUT-scale ∼ 1018 GeV
also is briefly considered.

1 Introduction

Trying to gain insight into Nature and considering the physical processes at very small distances,
physicists have made attempts to explain the well-known laws of low-energy physics as a con-
sequence of the more fundamental laws of Nature. The contemporary low-energy physics of the
electroweak and strong interactions is described by the Standard Model (SM) which unifies the
Glashow–Salam–Weinberg electroweak theory with QCD – the theory of strong interactions.

The gauge symmetry group in the SM is:

SMG = SU(3)c × SU(2)L × U(1)Y , (1)

which describes elementary particle physics up to the scale ≈ 100 GeV.
Recently it was shown that the Family Replicated Gauge Groups (FRGG) of the type

SU(n)N × SU(m)N provide new directions for research in high energy physics and quantum
field theory. In the Deconstruction of space-time models [1], the authors tried to construct
renormalizable asymptotically free 4-dimensional gauge theories which dynamically generate a
fifth dimension (it is possible to obtain more dimensions in this way). Such theories naturally
lead to electroweak symmetry breaking, relying neither on supersymmetry nor on strong dy-
namics at the TeV scale. The new TeV physics is perturbative and radiative corrections to the
Higgs mass are finite. Thus, we see that the family replicated gauge groups provide a new way
to stabilize the Higgs mass in the Standard Model.

But there exists quite different way to employ the FRGG.
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2 Family Replicated Gauge Group as an extension
of the Standard Model

The extension of the Standard Model with the Family Replicated Gauge Group:

G = (SMG)Nfam = [SU(3)c]Nfam × [SU(2)L]Nfam × [U(1)Y ]Nfam (2)

was first suggested in the paper [2] and developed in the book [3] (see also the review [4]). Here
Nfam designates the number of quark and lepton families. If Nfam = 3 (as our theory predicts
and experiment confirms), then the fundamental gauge group G is:

G = (SMG)3 = SMG1st fam. × SMG2nd fam. × SMG3rd fam., (3)

or

G = (SMG)3 = [SU(3)c]
3 × [SU(2)L]3 × [U(1)Y ]3. (4)

The generalized fundamental group:

Gf = (SMG)3 × U(1)f (5)

was suggested by fitting the SM charged fermion masses and mixing angles in paper [5]. A new
generalization of our FRGG-model was suggested in papers [6], where:

Gext = (SMG × U(1)B−L)3

≡ [SU(3)c]3 × [SU(2)L]3 × [U(1)Y ]3 × [U(1)(B−L)]
3 (6)

is the fundamental gauge group, which takes right-handed neutrinos and the see-saw mechanism
into account. This extended model can describe all modern neutrino experiments, giving a
reasonable fit to all the quark-lepton masses and mixing angles.

The gauge group G = Gext contains: 3×8 = 24 gluons, 3×3 = 9 W -bosons, and 3×1+3×1 = 6
Abelian gauge bosons.

The gauge group Gext = (SMG × U(1)B−L)3 undergoes spontaneous breakdown (at some
orders of magnitude below the Planck scale) to the Standard Model Group SMG which is the
diagonal subgroup of the non-Abelian sector of the group Gext. As was shown in Ref. [7],
6 different Higgs fields: ω, ρ, W , T , φWS , φB−L break our FRGG-model to the SM. The
field φWS corresponds to the Weinberg–Salam Higgs field of Electroweak theory. Its vacuum
expectation value (VEV) is fixed by the Fermi constant: 〈φWS〉 = 246 GeV, so that we have
only 5 free parameters – five VEVs: 〈ω〉, 〈ρ〉, 〈W 〉, 〈T 〉, 〈φB−L〉 to fit the experiment in the
framework of the SM. These five adjustable parameters were used with the aim of finding the
best fit to experimental data for all fermion masses and mixing angles in the SM, and also to
explain the neutrino oscillation experiments.

Experimental results on solar neutrino and atmospheric neutrino oscillations from Sudbury
Neutrino Observatory (SNO Collaboration) and the Super-Kamiokande Collaboration have been
used to extract the following parameters:

∆m2
solar = m2

2 − m2
1, ∆m2

atm = m2
3 − m2

2,

tan2 θsolar = tan2 θ12, tan2 θatm = tan2 θ23, (7)

where m1, m2, m3 are the hierarchical left-handed neutrino effective masses for the three families.
We also use the CHOOZ reactor results. It is assumed that the fundamental Yukawa couplings
in our model are of order unity and so we make order of magnitude predictions. The typical fit
is shown in Table 1. As we can see, the 5 parameter order of magnitude fit is encouraging.
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Table 1. Best fit to conventional experimental data.
All masses are running masses at 1 GeV except the top quark mass which is the pole mass.

Fitted Experimental
mu 4.4 MeV 4 MeV
md 4.3 MeV 9 MeV
me 1.6 MeV 0.5 MeV
mc 0.64 GeV 1.4 GeV
ms 295 MeV 200 MeV
mµ 111 MeV 105 MeV
Mt 202 GeV 180 GeV
mb 5.7 GeV 6.3 GeV
mτ 1.46 GeV 1.78 GeV
Vus 0.11 0.22
Vcb 0.026 0.041
Vub 0.0027 0.0035

∆m2� 9.0 × 10−5 eV2 5.0 × 10−5 eV2

∆m2
atm 1.7 × 10−3 eV2 2.5 × 10−3 eV2

tan2 θ� 0.26 0.34
tan2 θatm 0.65 1.0
tan2 θchooz 2.9 × 10−2 < 2.6 × 10−2

There are also 3 see-saw heavy neutrinos in this model (one right–handed neutrino in each
family) with masses: M1, M2, M3. The model predicts the following neutrino masses:

m1 ≈ 1.4 × 10−3 eV, m2 ≈ 9.6 × 10−3 eV, m3 ≈ 4.2 × 10−2 eV (8)

– for left-handed neutrinos, and

M1 ≈ 1.0 × 106 GeV, M2 ≈ 6.1 × 109 GeV, M3 ≈ 7.8 × 109 GeV (9)

– for right-handed (heavy) neutrinos.
Finally, we conclude that our theory with the FRGG-symmetry is very successful in describing

experiment. The best fit gave the following values for the VEVs:

〈W 〉 ≈ 0.157, 〈T 〉 ≈ 0.077, 〈ω〉 ≈ 0.244, 〈ρ〉 ≈ 0.265 (10)

in the “fundamental units”, MPl = 1, and

〈φB−L〉 ≈ 5.25 × 1015 GeV (11)

which gives the see-saw scale: the scale of breakdown of the U(1)B−L groups (∼ 5× 1015 GeV).

3 The problem of monopoles in the Standard
and Family Replicated Models

The aim of the present Section is to show, following Ref. [8], that monopoles cannot be seen
in the Standard Model and in its usual extensions in the literature up to the Planck scale:
MPl = 1.22× 1019 GeV, because they have a huge magnetic charge and are completely confined
or screened. Supersymmetry does not help to see monopoles.

In theories with the FRGG-symmetry the charge of monopoles is essentially diminished.
Then monopoles can appear near the Planck scale and change the evolution of the fine structure
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constants αi(t) (here i = 1, 2, 3 corresponds to U(1), SU(2) and SU(3)), t = log(µ2/µ2
R), where

µ is the energy variable and µR is the renormalization point.
Let us consider the “electric” and “magnetic” fine structure constants:

α =
g2

4π
and α̃ =

g̃2

4π
, (12)

where g is the coupling constant, and g̃ is the dual coupling constant (in QED: g = e (electric
charge), and g̃ = m (magnetic charge)).

The Renormalization Group Equation (RGE) for monopoles is:

d(log α̃(t))
dt

= β(α̃). (13)

With the scalar monopole beta-function we have:

β(α̃) =
α̃

12π
+

(
α̃

4π

)2

+ · · · =
α̃

12π

(
1 + 3

α̃

4π
+ · · ·

)
. (14)

The latter equation shows that the theory of monopoles cannot be considered perturbatively at
least for

α̃ >
4π

3
≈ 4. (15)

And this limit is smaller for non-Abelian monopoles.
Let us consider now the evolution of the SM running fine structure constants. The usual

definition of the SM coupling constants is given in the Modified minimal subtraction scheme
(MS):

α1 =
5
3
αY , αY =

α

cos2 θMS

, α2 =
α

sin2 θMS

, α3 ≡ αs =
g2
s

4π
, (16)

where α and αs are the electromagnetic and SU(3) fine structure constants respectively, Y is
the weak hypercharge, and θMS is the Weinberg weak angle in MS scheme. Using RGEs with
experimentally established parameters, it is possible to extrapolate the experimental values of
the three inverse running constants α−1

i (µ) from the Electroweak scale to the Planck scale (see
Fig. 1).

In this connection, it is very attractive to include gravity. The quantity:

αg =
(

µ

µPl

)2

(17)

plays the role of the running ”gravitational fine structure constant” (see Ref. [8]) and the evo-
lution of its inverse is presented in Fig. 1 together with the evolutions of α−1

i (µ).
Assuming the existence of the Dirac relation: gg̃ = 2π for minimal charges, we have the

following expression for the renormalized charges g and g̃ [9]:

α(t)α̃(t) =
1
4
. (18)

Using the Dirac relation, it is easy to estimate (in the simple SM) the Planck scale value of
α̃(µPl) (minimal for U(1)Y gauge group):

α̃(µPl) =
5
3
α−1

1 (µPl)/4 ≈ 55.5/4 ≈ 14. (19)
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Figure 1.

This value is really very big compared with the estimate (15) and, of course, with the critical
coupling α̃crit ≈ 1, corresponding to the confinement – deconfinement phase transition in the
lattice U(1) gauge theory. Clearly we cannot make a perturbation approximation with such
a strong coupling α̃. It is hard for such monopoles not to be confined.

There is an interesting way out of this problem if one wants to have the existence of monopoles,
namely to extend the SM gauge group so cleverly that certain selected linear combinations of
charges get bigger electric couplings than the corresponding SM couplings. That could make
the monopoles which, for these certain linear combinations of charges, couple more weakly and
thus have a better chance of being allowed “to exist”.

An example of such an extension of the SM that can impose the possibility of allowing the
existence of free monopoles is just Family Replicated Gauge Group Model (FRGGM).

FRGGs of type [SU(N)]Nfam lead to the lowering of the magnetic charge of the monopole
belonging to one family:

α̃one family =
α̃

Nfam
. (20)

For Nfam = 3, for [SU(2)]3 and [SU(3)]3, we have: α̃
(2,3)
one family = α̃(2,3)/3. For the family

replicated group [U(1)]Nfam we obtain:

α̃one family =
α̃

N∗ , (21)

where N∗ = 1
2Nfam(Nfam + 1). For Nfam = 3 and [U(1)]3, we have: α̃

(1)
one family = α̃(1)/6 (six

times smaller!). This result was obtained previously in Ref. [10].
According to the FRGGM, at some point µ = µG < µPl (or really in a couple of steps) the

fundamental group G ≡ Gext undergoes spontaneous breakdown to its diagonal subgroup:

G −→ Gdiag.subgr. = {g, g, g||g ∈ SMG}, (22)

which is identified with the usual (low-energy) group SMG.
In the Anti-GUT-model [2, 3] the FRGG breakdown was considered at µG ∼ 1018 GeV.

But the aim of this investigation is to show that we can see quite different consequences of
the extension of the SM to FRGGM, if the G-group undergoes the breakdown to its diagonal
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Figure 2.

subgroup (that is, SMG) not at µG ∼ 1018 GeV, but at µG ∼ 1014 or 1015 GeV, i.e. before the
intersection of α−1

2 (µ) with α−1
3 (µ) at µ ≈ 1016 GeV. In this case, in the region µG < µ < µPl

there are three SMG × U(1)B−L groups for the three FRGG families, and we have a lot of
fermions, mass protected or not mass protected, belonging to usual families or to mirror ones.
In the FRGGM the additional 5 Higgs bosons, with their large VEVs, are responsible for the
mass protection of a lot of new fermions appearing in the region µ > µG. Here we denote the
total number of fermions NF , which is different to Nfam.

Also the role of monopoles can be important in the vicinity of the Planck scale: they give
contributions to the beta-functions and change the evolution of the α−1(µ). Finally, we obtain
the following RGEs:

d(α−1
i (µ))
dt

=
bi

4π
+

N
(i)
M

αi
β(m)(α̃U(1)), (23)

where bi are given by the following values:

bi = (b1, b2, b3) =
(
−4NF

3
− 1

10
NS ,

22
3

NV − 4NF

3
− 1

6
NS , 11NV − 4NF

3

)
. (24)

The integers NF , NS , NV , NM are respectively the total numbers of fermions, Higgs bosons,
vector gauge fields and scalar monopoles in the FRGGM considered in our theory. In our FRGG
model we have NV = 3, because we have 3 times more gauge fields (Nfam = 3), in comparison
with the SM and one Higgs scalar monopole in each family.

We have obtained the evolutions of α−1
i (µ) near the Planck scale by numerical calculations

for: µG = 1014 GeV, NF = 18, NS = 6, N
(1)
M = 6, N

(2,3)
M = 3. Fig. 2 shows the existence of the

unification point.
We see that in the region µ > µG a lot of new fermions, and a number of monopoles near the

Planck scale, change the one-loop approximation behavior of α−1
i (µ) which we had in the SM. In

the vicinity of the Planck scale these evolutions begin to decrease, as the Planck scale µ = µPl is
approached, implying the suppression of asymptotic freedom in the non-Abelian theories. Fig. 2
gives the following Planck scale values for the αi:

α−1
1 (µPl) ≈ 13, α−1

2 (µPl) ≈ 19, α−1
3 (µPl) ≈ 24. (25)



Family Replicated Gauge Group Models 743

Fig. 2 demonstrates the unification of all gauge interactions, including gravity (the intersection
of α−1

g with α−1
i ), at

α−1
GUT ≈ 27 and xGUT ≈ 18.4. (26)

Here we can expect the existence of [SU(5)]3 or [SO(10)]3 (SUSY or not SUSY) unification.
Considering the predictions of such a theory for low-energy physics and cosmology, maybe

in future we shall be able to answer the question: Does the unification [SU(5)]3 or [SO(10)]3

really exist near the Planck scale?
Recently F.S. Ling and P. Ramond [11] considered the group of symmetry [SO(10)]3 and

showed that it explains the observed hierarchies of fermion masses and mixings.
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