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Ankara University, Faculty of Science, Department of Physics, 06100 Tandoğan/Ankara, Turkey
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As an extension of the intertwining operator idea a constructive method for establishment
of families of three-dimensional (super)integrable and isospectral potentials having higher-
order dynamical symmetries is developed.

In analogy to integrability concepts of classical mechanics [1–3], a quantum mechanical system
described in N dimensional (ND) Euclidean space by a stationary Hamiltonian operator H is
called to be completely integrable if there exists a set of N−1 (together with H,N) algebraically
independent linear operators commuting with H and among each other [4–8]. If there exist k
(0 < k ≤ N − 1), additional operators commuting with H it is said to be superintegrable.
The superintegrability is said to be minimal if k = 1 and maximal if k = N − 1. Recently,
the intertwining operator method has been systematically used in establishing families of 2D
superintegrable potentials that are at the same time isospectral [9, 10]. In this letter we shall
extend this program in constructing 3D integrable and superintegrable isospectral potentials.

The method of intertwining is a unified approach widely used in various fields of physics
and mathematics [11–20]. To see the usefulness of this method let us consider two Hamiltonian
operators H0 and H1 that are Hermitian (on some common function space) and intertwined by
a linear intertwining operator L such that LH0 = H1L. Two dimension and form independent
general properties [14, 15] immediately follow from such a relation; (i) If ψ0 is an eigenfunction
of H0 with eigenvalue of E0 then ψ1 = Lψ0 is an (unnormalized) eigenfunction of H1 with the
same eigenvalue E0. That is L transforms one solvable problem into another. (ii) L† intertwines
in the other direction H0L† = L†H1 and this in turn provides two hidden dynamical symmetries
of H0 and H1 in terms of L: [H0,L†L] = 0 = [H1,LL†], where † and [ , ] stand for Hermitian
conjugation and commutator.

In this letter we shall first apply this method to a pair of 3D systems described by

H0 = −∇2 + V0, H1 = −∇2 + V1, (1)

and take L to be the following first order linear operator

L = L0 + L · ∇. (2)

∇2 is the Laplace operator in the Cartesian coordinates (x1, x2, x3), L = (L1, L2, L3) and “·”
denotes the usual inner product of R

3. The potentials V0, V1 and L0, L are some functions of
coordinates that are to be determined from consistency equations of LH0 = H1L which for (1)
and (2) takes the form:

[∇2,L · ∇] = −[∇2, L0] + [V0,L · ∇] + P L, (3)

where P = V1 − V0.
By equating the second power of partial derivatives ∂j ≡ ∂/∂xj in equation (3) (these come

only from [∇2,L·∇]) we obtain

L = a − b × r, (4)
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where a = (a1, a2, a3), b = (b1, b2, b3) are arbitrary constant vectors and “×” stands for the usual
cross product of R

3. In terms of vector operators T = ∇, J = −(r × ∇) whose components
close into defining relations of six dimensional Euclidean algebra e(3)

[Tj , Tk] = 0, [Jj , Jk] = εjklJl, [Jj , Tk] = εjklTl, (5)

the differential part of L can be written as

L · ∇ = a · T + b · J . (6)

Tj ’s and Jk’s generate, respectively, the translation subalgebra t(3) and rotation subalgebra
so(3) of e(3) which accepts ∇2 = T · T as its Casimir.

The first and zeroth powers of derivatives of (3) gives the following set of consistency equations

∇L0 = PL, (7)

(−∇2 + P)L0 = L · ∇V0. (8)

Equation (8) is nonlinear and the integrability conditions ∂j∂kL0 = ∂k∂jL0 for the linear set (7)
are equivalent to L × ∇P = −2bP, where we have used the relation ∇ × L = −2b. Scalar
multiplication of the both sides of this relation by L implies, for P �= 0, that

b · L = a · b = 0. (9)

Equations (7) and (8) must be solved after choosing a and b in accordance with condition (9).
In doing that we shall make use of the orbit structure of e(3) under the adjoint action of the
Euclidean group E(3) [20]. Under such a transformation, generated by

U = eη1J3eη2J1eη3J3eξ·T

e(3) has three orbit types with representatives T3, J3 and κ1T3 + κ2J3, where ηi, ξj , κ1 and κ2

are real group parameters. That is, any element of e(3) can be transformed by a similarity
transformation U to one of the orbit representatives. Evidently, such a transformation leaves
the intertwining relation form invariant; L̄H̄0 = H̄1L̄, where X̄ = UXU † and U−1 = U † stands
for the inverse of U ∈ E(3). Thus, if we choose the differential part of L as one of the orbit
representatives the so found potentials and L0 will be unique up to a similarity action of E(3).
Noting that only the choices T3 or J3 for L · ∇ respect the condition (9) below we shall follow
this procedure in two steps.

Step I. First we take L · ∇ = T3. In that case equation (7) gives the equations: ∂1L0 =
0 = ∂2L0, 2∂3L0 = P which imply L0 = g1(x3) and P = 2g′1(x3), where g1 is an arbitrary
differentiable function of x3 (we use prime to denote derivative with respect argument). Then
from the nonlinear equation (8) which takes the form (−∂2

3 + P)L0 = ∂3V0, we obtain

V0 = V (x1, x2) + V−, V1 = V (x1, x2) + V+, (10)

where

V± = g2
1(x3) ± g′1(x3). (11)

Hence, we have found two isospectral Hamiltonians H0 = −∇2 + V0 and H1 = −∇2 + V1 that
are intertwined by L10 = g1(x3) + T3 as follows L10H0 = H1L10.

Step II. Fixing the form of H1 found above we shall now intertwine it to an another Hamil-
tonian H2 with L21. This will amount to the fact that we have three pairwise intertwined
Hamiltonians

L10H0 = H1L10, L21H1 = H2L21, L20H0 = H2L20,



Three-Dimensional Integrable and Superintegrable Isospectral Potentials 565

where L20 ≡ L21L10 and the last relation is a direct result of the first two. Moreover, since each
Hamiltonian will be double intertwined we will have two additional symmetries for each one.

For H2 = −∇2 + V2 and L21 = K0 + J3 the linear set of consistency equations can be read
from (7) to be

2∂1K0 = Px2, 2∂2K0 = −Px1, ∂3K0 = 0. (12)

Now P = V2−V1 and solutions are K0 = g2(u) and P = −2g′2(u)/x2
1, where g2 is a differentiable

function of u = x2/x1. In that case the nonlinear equation is (−∇2 + P )K0 = J3V1 and for the
found K0, P takes the form

∂u

[
(1 + u2)g′2(u) + g2

2(u)
]

= −x2
1J3V (x1, x2). (13)

The most general form of V that makes the right-hand side of equation (13) a function of u is

V (x1, x2) = F (ρ) +
1
x2

1

h(u), (14)

where F and h are arbitrary functions of ρ = (x2
1+x2

2)
1/2 and u respectively. Note that J3F = 0.

Using (14) in (13) we see that g2 and h have to satisfy the equation
(
1 + u2

)
g′2(u) + g2

2(u) =
(
1 + u2

)
h(u). (15)

Combining the results of above two steps we get the following triplet of isospectral potentials

V0 = V + V−, V1 = V + V+, V2 = V1 − 2g′2(u)
x2

1

. (16)

V± are given by (11) and g2, h are any solutions of equation (15). The corresponding symmetry
generators are collected as follows

X0 = L†
10L10 = V− − T 2

3 ,

Y0 = L†
20L20 =

[
g2
2 − (1 + u2)g′2 − J2

3

]
X0,

X1 = L10L†
10 = V+ − T 2

3 ,

Y1 = L†
21L21 = g2

2 − (
1 + u2

)
g′2 − J2

3 , (17)

X2 = L21L†
21 = g2

2 + (1 + u2)g′2 − J2
3 ,

Y2 = L20L†
20 =

[
g2
2 +

(
1 + u2

)
g′2 − J2

3

]
X1,

where the subscripts of Xj , Yj indicate the Hamiltonians they belong to. By construction, all
these operators are factorized, have even orders (Y2 and Y0 are both the fourth order and X1,
Y1, X0, X2 are second order) and [Hi, Xi] = 0 = [Hi, Yi]; i = 0, 1, 2. One can also easily verify
that [Xi, Yi] = 0. As we have, together with the Hamiltonians, three independent, pairwise
commuting symmetry generators for each Hamiltonian, equation (16) describes 3D integrable
isospectral systems. From (17) we also observe that the fourth order symmetries are of the form
Y0 = Y1X0, Y2 = X2X1. This is due to the fact that L10 and L21 are commuting.

We shall now introduce two additional methods which produce minimally superintegrable
(having four independent symmetries) subclasses of the above integrable 3D systems.

Method I. In this method we shall construct an additional symmetry generator Z1 of H1.
SinceH1 is intertwined toH0 andH2 the existence of such symmetry will provide Z0 = L†

10Z1L10

and Z2 = L21Z1L†
21 as new symmetry generators of H0 and H2. This method is another general

property (independent from the dimension and Hamiltonians) of the intertwining operator idea.
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As a simple realization of this method we shall take Z1 = c·J , where c = (c1, c2, c3) is a constant
vector. Then the condition [Z1, H1] = 0 yields the consistency equation c · K = 0, where

K1 = x3∂2V − x2∂3V+(x3), K2 = x3∂1V − x1∂3V+(x3), K3 = −J3[
h(u)
x2

1

], (18)

and V+, V are given by (11) and (14). Below three special cases are considered.
Case I. In the case of Z1 = J3 we have the equation K3 = 0, which yields h = β/(1 + u2),

where β is an arbitrary constant. Since there is no restriction on F and V±, the potentials are
given by (16) with V (ρ) = F (ρ) + βρ−2. The condition (15) now is as follows

(1 + u2)g′2(u) + g2
2(u) = β. (19)

The new symmetry generators of H0 and H2 are the following third-order operators

Z0 = L†
10Z1L10 = (g1 − T3)J3(g1 + T3) = X0J3,

Z2 = L21Z1L†
21 = (g2 + J3)J3(g2 − J3).

In addition to [Z0, H0] = 0 = [Z2, H2], we have

[X1, Z1] = 0,

[Y1, Z1] = 4(1 + u2)g2g′2,

[X0, Z0] = L†
10 [X1, Z1]L10 = 0,

[Y0, Z0] = L†
10[Y1, Z1]X1L10, (20)

[X2, Z2] = L21 [Y1, Z1]L†
21,

[Y2, Z2] = L21[Y1, Z1]X1L†
21.

Provided that [Y1, Z1] �= 0, that is g �= const, we have [Yi, Zi] �= 0 for i = 0, 2, and [X2, Z2] �= 0.
Each one of Hi corresponds to a minimally superintegrable system, with four symmetry gener-
ators (Hi, Xi, Yi, Zi).

Case II. If we take Z1 = J2 then the separable equation K2 = 0 gives

V+ =
1
2
αx2

3, h =
β

1 + u2
+

γ

u2
, F =

1
2
αρ2 − β

ρ2
, (21)

where α, β, γ are arbitrary constants. In that case the potentials given by (16) are restricted to
the following forms

V0 = V1 − 2g′1, V1 =
α

2
r2 +

γ

x2
2

, V2 = V1 − 2
x2

1

g′2, (22)

where r =
(
x2

1 + x2
2 + x2

3

)1/2, and g1, g2 are any solutions of

g′1 + g2
1 =

1
2
αx2

3,
(
1 + u2

)
g′2 + g2

2 = β + γ +
γ

u2
. (23)

It is easy to verify that [X1, Z1] and [Y1, Z1] are always different from zero. The new third-order
symmetry generators of H0 and H2 satisfy the commutators given by (20).

Case III. Finally we take Z1 = kJ2 + J1. In that case V+, F are the same as in (21) and

h =
β

(1 + u2)
+

γ

(1 − ku)2
.
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On substituting these solutions into (16), we obtain

V0 = V1 − 2g′1, V1 =
α

2
r2 +

γ

x2
1(1 − ku)2

, V2 = V1 − 2
x2

1

g′2, (24)

where g1 is determined from the first equation of (23) and by equation (15), g2 is any solution
of

(
1 + u2

)
g′2 + g2

2 = β + γ
1 + u2

(1 − ku)2
. (25)

Other choices of c produce similar potentials.
Method II. By fixing the form of H1 found in the Step I we shall now intertwine it to

another Hamiltonian H3 with L31. This will provide four pairwise intertwined Hamiltonians
with three additional symmetries since each one will be three times intertwined as follows:

L10H0 = H1L10, L21H1 = H2L21, L20H0 = H2L20,

L30H0 = H3L30, L31H1 = H3L31, L32H2 = H3L32,

where L20 ≡ L21L10, L30 ≡ L31L10 and L32 ≡ L31L†
21.

Let us take H3 = −∇2 + V3 and L31 = M0 + a1T1 + J2. From equation (7) the linear set of
consistency equations are

2∂1M0 = P (a1 − x3), ∂2M0 = 0, 2∂3M0 = Px1, (26)

where P = V3 − V1 and the solutions are M0 = g3(v) and P = −2g′3(v)/x2
1, where g3 is

a differentiable function of v = (a1 − x3)/x1. Now the nonlinear equation (corresponding to
equation (8)) is (−∇2 + P )M0 = (a1T1 + J2)(V + V+), and for M0 and P found above this
equation takes the form

∂v

[(
1 + v2

)
g′3(v) + g2

3(v)
]

= −x2
1(a1 − x3)∂1

[
F (ρ) +

h(u)
x2

1

]
− x3

1∂3V+(x3), (27)

where V+ is given by equations (11) and we made use of equation (14). It is not hard to see
that the most general forms of F , h and V+ which make the right-hand side of equation (27)
only a function of v are as follows

F = µρ2 − γ

ρ2
+ λ, h =

γ

1 + u2
+
µ2

u2
+ µ1, V+ = µ(a1 − x3)2 +

µ3

(a1 − x3)2
,

where µ, γ, µi; i = 1, 2, 3 are arbitrary constants. On substituting these in (11), (15) and (27),
we see that g1, g2 and g3 have to satisfy the following Riccati equations

g′1(x3) + g2
1(x3) = µ(a1 − x3)2 +

µ3

(a1 − x3)2
,

(
1 + u2

)
g′2(u) + g2

2(u) = γ + µ2 + µ1

(
1 + u2

)
+ µ2

1
u2
, (28)

(
1 + v2

)
g′3(v) + g2

3(v) = µ1v
2 +

µ3

v2
+ λ1.

Provided that g1, g2, g3 are any solutions of these equations the potentials are

V0 = V1 − 2g′1(x3), V1 = V + V+, V2 = V1 − 2g′2(u)
x2

1

, V3 = V1 − 2g′3(v)
x2

1

, (29)
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where

V = µ
(
x2

1 + x2
2

)
+

(
µ1

x2
1

)
+

(
µ2

x2
2

)
+ λ,

and λ1, λ are arbitrary constants. The old symmetry generators Xi, Yi, i = 0, 1, 2 are given
by (17) and the new ones are as follows

Z0 = L†
30L30, Z1 = L†

31L31, Z2 = L†
32L32,

X3 = L31L†
31, Y3 = L30L†

30, Z3 = L32L†
32. (30)

By construction, all generators commute with the corresponding Hamiltonians, (Y0, Z0, Y2, Z2,
Y3, Z3) are of the order four (in derivative, or equivalently, in the generators of e(3) algebra) and
the remaining ones are the second order. Hi’s are minimally superintegrable since [Xi, Yi] = 0,
[Xi, Zi] �= 0 and [Yi, Zi] �= 0, for i = 0, 1, 2. But, because of the relations [X3, Y3] �= 0,
[X3, Z3] �= 0 and [Y3, Z3] �= 0 the new Hamiltonian H3 is not even integrable. However, by
applying the method I we have introduced above to the potentials given by (29), H3 (and the
other Hamiltonians) can be made maximally superintegrable (another way which may produce
different potentials is to use the intertwining method once again). Finally we would like to em-
phasise that a hierarchy of potentials can be constructed by first linearizing the Riccati equations
found above and then using the solutions of resulting 1D Schrödinger equations [10].
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[10] Demircioğlu B., Kuru Ş., Önder M. and Verçin A., Two families of superintegrable and isospectral potentials
in two dimensions, J. Math. Phys., 2002, V.43, 2133–2150.

[11] Junker G., Supersymmetric methods in quantum and statistical physics, Berlin, Springer, 1996.

[12] Cooper F., Khare A. and Sukhatme U., Supersymmetry and quantum mechanics, Phys. Rep., 1995, V.251,
267–385.

[13] Matveev V.B. and Salle M.A., Darboux transformations and solitons, Berlin, Springer, 1991.

[14] Anderson A., Operator method for finding new propagators from old, Phys. Rev. D, 1988, V.37, 536–539;
Anderson A. and Camporesi R., Intertwining operators for solving differential equations, with applications
to symmetric spaces, Commun. Math. Phys., 1990, V.130, 61–82.

[15] Cannata F., Ioffe M., Junker G. and Nishnianidze D., Intertwining relations of non-stationary Schrödinger
operators, J. Phys. A, 1999, V.32, 3583–3598.

[16] Anderson A., Intertwining of exactly solvable Dirac equations with one-dimensional potentials, Phys. Rev. A,
1991, V.43, 4602–4610.

[17] Pursey D.L., Isometric operators, isospectral Hamiltonians, and supersymmetric quantum mechanics, Phys.
Rev. D, 1986, V.33, 2267–2279.

[18] Nieto L.M., Pecheritsin A.A. and Samsonov B.F., Intertwining technique for the one-dimensional stationary
Dirac equation, Ann. Phys., 2003, V.305, 151–189.

[19] Andrianov A.A., Ioffe M.V. and Nishnianidze D.N., Polynomial SUSY in quantum mechanics and second
derivative Darboux transformations, Phys. Lett. A, 1995, V.201, 103–110.

[20] Miller W., Symmetry and separation of variables, Reading, MA, Addison Wesley, 1977.


