
Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 2, 862–869

Renormalization, Ward Identities, Symmetries,

and Quantum Anomalies: Logical Aspect

Valentyn I. KUCHERYAVY

Bogolyubov Institute for Theoretical Physics, 14b Metrologichna Str., 03143 Kyiv, Ukraine
E-mail: mmtpitp@bitp.kiev.ua

Logical aspects associated with renormalization methods, Ward identities, symmetries, and
quantum anomalies are investigated for ultraviolet divergent VV, AA, AV, and VA mass-
anisotropic spinor amplitudes characterizing the most important polarization properties of
many-fermion vacuum in any space-time dimension n = 2r+δn, δn = 0, 1. It is shown clearly
that genuine algorithmic cause of perturbation theory anomalies is a logical descrepancy
arising in the course of evaluating finite values of UV-divergent Feynman amplitudes (FAs)
by means of commonly used renormalization techniques. Some important lessons, which
teach us the manner how to construct a logically consistent renormalization technique, i.e.
self-consistent renormalization (SCR), are revealed as part of this study.

1 Introduction

This report is a brief exposition of some results by the author on the investigation of a compli-
cated tangle of problems associated on the one hand with renormalization methods and on the
other hand with symmetries, their breaking, the Ward identities behavior, the Schwinger terms
contributions (STC), and quantum anomalies. The main emphasis of this presentation is made
on logical aspects of above problems. It will be shown clearly that genuine algorithmic cause of
perturbation theory anomalies is a logical trap arising in the course of evaluating finite values
of UV-divergent FAs by means of commonly used renormalization techniques.

The subject is illustrated for some set of quantities appearing in vector and axial vector
Ward identities associated with VV, AA, AV, and VA mass-anisotropic UV-divergent spinor
FAs characterizing the most important polarization properties of the fermion vacuum for n-
dimensional quantum field models in which a mass spectrum of many-fermion sector may be
both degenerate and nondegenerate (see reviews [1, 2]). Moreover, these amplitudes have of
primary importance for investigating of anomaly problems [3–7]1 as well.

1It is appropriate to present Jackiw’s point of view (see [6, p. 156]) on this question and on the essence of
quantum anomalies at all: “. . . Thus, in a very precise way, the two-dimensional Abelian anomaly [K. Johnson,
PL (1963), see Ref. [3] of our paper] is at the heart of the entire anomaly phenomenon . . .

. . . We have learned much from mathematicians about the topological and cohomological necessity of anoma-
lies [A.S. Schwarz, PL (1977); L. Brown, R. Carlitz and C. Lee, PR (1977); R. Jackiw and C. Rebbi, PR (1977);
M. Atiyah and I. Singer, PNAS USA (1984); L. Alvarez-Gaumé and P. Ginsparg, NP (1984)] but perhaps physics
can, in its turn, advance mathematical concepts by insisting on the fact that the essence of the anomaly lies
beyond present topological/cohomological ideas. The latter involve integrated, global quantities, like the Chern–
Pontryagin number, yet the anomaly is local. Moreover, anomalies are present even in the absence of obstructions,
like in Abelian [U(1)] theories, as in the discussed example which, being two-dimensional, hardly possesses any
structure, save the anomaly. The U(1) anomaly, on the other hand, appears to be the heart of the matter, not
only for the non-Abelian anomalies,but also for the non-perturbative ones [E. Witten, PL (1982); R. Jackiw,
“Relativity, groups, and topology II” (1984), see Ref. [5] of the present paper].

Thus, it seems that we are not yet at the end of the physics nor of the mathematics that can emerge from
understanding anomalies . . . ”.
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2 VV, AA, AV, and VA mass-anisotropic spinor amplitudes

2.1. Consider VV, AA, AV, and VA mass-anisotropic spinor UV-divergent Feynman amplitudes

Iαβ
JJ′(m, k)ε :=

∫ ∞

−∞
(dnp) δ(p, k)

Iαβ
JJ′(m, p)

(µ1ε − p2
1)(µ2ε − p2

2)
, J, J ′ ∈ {V, A},

Iαβ
JJ′(m, p) := tr[γαγ(m1 + p̂1)γβγ′(m2 + p̂2)], γ, γ′ ∈ {Ig, γ̃

5}, γγ′ ∈ {Ig, εgIg, γ̃
5}, (1)

δ(p, k) := δ(−k1 + p2 − p1) δ(−k2 + p1 − p2), k := (k1, k2), p := (p1, p2),

(dnp) := dnp1d
np2, dnpl :=

∏n

σ=1
dpσ

l , µlε := m2
l − iεl, p̂l := γσplσ, l = 1, 2, (2)

γσγ = (−1)π1γγσ, γσγ′ = (−1)π2γ′γσ, (−1)πi =

{
1, if γ, γ′ = Ig,

(−1)n+1, if γ, γ′ = γ̃5.
(3)

The nondegenerate metric gµν with (p, q)-signature, p + q = n = 2r + δn, δn = 0, 1, are used for
each n-dimensional pl-integration in equations (1)–(3). From now on V , A, S, and P used in
subscripts denote vector, axial vector, scalar, and pseudoscalar respectively.

The matrices γα, γβ, γ̃5, Ig, act in the Ng-dimensional space of the faithful representa-
tion π(g) of the lowest dimension for the Clifford algebra Cl(g)K, K = R or C, with γσ ∈
Λ1(g), σ = 1, . . . , n, being the generating elements of the Cl(g)K-algebra in its matrix repre-
sentation π(g), i.e. γσγτ + γτγσ = 2gστIg, and Ig is the unit matrix of the dimension Ng.
The n-degree element γ̃5 ∈ Λn(g), i.e. the dual conjugation matrix, with the obvious but
important properties: γ̃5 := γ1γ2 · · · γn, γσγ̃5 = (−1)n+1γ̃5γσ, σ = 1, . . . , n; (γ̃5)2 = εgIg,
εg := (−1)q(−1)n(n−1)/2 = (−1)κ(κ+1)/2, κ := (q − p)(mod 8), is the natural n-dimensional
analog of the Dirac γ5-matrix. For more details on properties of the γ̃5-matrix and on the
self-consistent version of the dimensional regularization with the γ̃5-matrix see [8].

Between amplitudes of equations (1)–(3) there exist the following relations

Iαβ
AA (m, k)ε = εgI

αβ
V V (m, k)ε + εg ((−1)n+1 − 1)m1m2tr[γαγβ]I(m, k)ε,

I αβ
AV (m, k)ε = I αβ

V A (m, k)ε + ((−1)n+1 − 1)m1m2tr[γ̃5γαγβ ]I(m, k)ε, ∀ n = 2r + δn, (4)

where I(m, k)ε is given below by equations (9). So, the distinction between either Iαβ
AA (m, k)ε and

Iαβ
V V (m, k)ε or I αβ

AV (m, k)ε and I αβ
V A (m, k)ε may exist only for even n = 2r and if both m1, m2 > 0;

if so, this distinction is determined by the same quantity, (−2m1m2)I(m, k)ε, which distinguishes
their functions standing either at tensor tr[γαγβ ] or tr[γ̃5γαγβ ] respectively.

2.2. Owing to the relations δ(−k1 + p2 − p1)(k̂1 − p̂2 + p̂1) = 0, δ(−k2 + p1 − p2)(k̂2 − p̂1 +
p̂2) = 0, from equations (1)–(3) imply useful decompositions: δ(p, k)k̂1γ = δ(p, k)(p̂2 − p̂1)γ =
δ(p, k)[(−1)π1γ(m1 − p̂1) − (m2 − p̂2)γ + (m2 − (−1)π1m1)γ], δ(p, k)k̂2γ

′ = δ(p, k)(p̂1 − p̂2)γ′ =
δ(p, k)[(−1)π2γ′(m2− p̂2)− (m1− p̂1)γ′+(m1− (−1)π2m2)γ′], which formally produce the vector
and axial vector canonical Ward identities (CWIs),

k1αIαβ
JJ′(m, k)ε = D·β

JJ′(m, k)ε = P ·β
JJ′(m, k)ε + M ·β

JJ′(m, k)ε,

k2βIαβ
JJ′(m, k)ε = Dα·

JJ′(m, k)ε = P α·
JJ′(m, k)ε + M α·

JJ′(m, k)ε, (5)

for main mass-anisotropic UV-divergent FAs presented by equations (1)–(3); in so doing the
vector and axial vector CWIs are given here in the uniform manner. Associated quanti-
ties, D·β

JJ′(m, k)ε, Dα·
JJ′(m, k)ε, P ·β

JJ′(m, k)ε := (−1)π1P ·β
JJ′;1(m, k)ε − P ·β

JJ′;2(m, k)ε, P α·
JJ′(m, k)ε :=

(−1)π2P α·
JJ′;2(m, k)ε − P α·

JJ′;1(m, k)ε, M ·β
JJ′(m, k)ε := (m2 − (−1)π1m1)I

·β
J̇J′(m, k)ε, M α·

JJ′(m, k)ε :=
(m1 − (−1)π2m2) Iα·

JJ̇′(m, k)ε, J̇ , J̇ ′∈{S, P}, entering into the CWIs (5) are similar to the main
amplitudes Iαβ

JJ′(m, k)ε, and differ from the latest ones only in polynomials of integrands, see
Ref. [9], equations (3)–(6).
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As is already known from equations (4), the even n are especially important for us. For this
reason we shall consider only the case n = 2r in the following. In addition, some simplifications
occur since tensors of the type tr[γαγγβγ′γσ], tr[γβγ′γ] are equal zero. So, all amplitudes
entering into CWIs (5) can be written in the form (n = 2r):

Iαβ
JJ′(m, k)ε = tr[γαγγσγβγ′γτ ]Iστ

12 (m, k)ε + tr[γαγγβγ′] m1m2I(m, k)ε,

D·β
JJ′(m, k)ε = tr[γβγ′γγσ][Iσ

2;1(m, k)ε − Iσ
1;2(k)ε + m1m2(−1)π1(Iσ

2 (m, k)ε − Iσ
1 (k)ε)],

Dα·
JJ′(m, k)ε = tr[γαγγ′γσ][Iσ

1;2(m, k)ε − Iσ
2;1(k)ε + m1m2(−1)π2(Iσ

1 (m, k)ε − Iσ
2 (k)ε)], (6)

P ·β
JJ′(m, k)ε = tr[γβγ′γγσ][P σ

1;2(m, k)ε − P σ
2;1(m, k)ε],

P α·
JJ′(m, k)ε = tr[γαγγ′γσ][P σ

2;1(m, k)ε − P σ
1;2(m, k)ε], (7)

M ·β
JJ′(m, k)ε = tr[γβγ′γγσ][mJ̇J′;1I

σ
2 (m, k)ε − mJ̇J′;2I

σ
1 (m, k)ε],

M α·
JJ′(m, k)ε = tr[γαγγ′γσ][mJJ̇′;2I

σ
1 (m, k)ε − mJJ̇′;1I

σ
2 (m, k)ε],

where mJ̇J′;l := (m1m2(−1)π1 − m2
l ), mJJ̇′;l := (m1m2(−1)π2 − m2

l ), l = 1, 2, (8)

in which we make use of the following quantities:

I(m, k)ε :=
∫ ∞

−∞

(dnp) δ(p, k)
(µ1ε − p2

1)(µ2ε − p2
2)

, Iσ
l (m, k)ε :=

∫ ∞

−∞

(dnp) δ(p, k)pσ
l

(µ1ε − p2
1)(µ2ε − p2

2)
, l = 1, 2,

Iστ
ll′ (m, k)ε :=

∫ ∞

−∞

(dnp) δ(p, k)pσ
l pτ

l′

(µ1ε − p2
1)(µ2ε − p2

2)
, l, l′ ∈ {1, 2},

Iσ
l;l′(m, k)ε :=

∫ ∞

−∞

(dnp) δ(p, k)p2
l p

σ
l′

(µ1ε − p2
1)(µ2ε − p2

2)
, l, l′ ∈ {1, 2}, l′ �= l, (9)

P σ
l;l′(m, k)ε :=

∫ ∞

−∞

(dnp) δ(p, k)(m2
l − p2

l )p
σ
l′

(µ1ε − p2
1)(µ2ε − p2

2)
= m2

l I
σ
l′ (m, k)ε − Iσ

l;l′(m, k)ε, l′ �= l,

Iσ
1 (m, k)ε − Iσ

2 (m, k)ε = kσ
2 I(m, k)ε. (10)

It should be particularly emphasized that Iσ
l (m, k)ε and Iσ

l;l′(m, k)ε in its turn are constituents
of P σ

l;l′(m, k)ε. Next, if m1, m2 > 0, then it follows from equation (10) that lim
εl→0

P σ
l;l′(m, k)ε =∫ ∞

−∞ (dnp) δ(p, k) pσ
l′/(µl′ε − p2

l′) = 0, as a consequence of the “symmetric integration” (skew-
symmetric functions are integrated in symmetric limits).

2.3. The closely similar to P σ
l;l′(m, k)ε, but nevertheless different expressions,

P σ
lε;l′(m, k)ε :=

∫ ∞

−∞

(dnp) δ(p, k)
(µ1ε − p2

1)(µ2ε − p2
2)

(µlε − p2
l )p

σ
l′ (11)

=
∫ ∞

−∞
(dnp) δ(p, k) pσ

l′/(µl′ε − p2
l′) = 0, l, l′ ∈ {1, 2}, l′ �= l; m1, m2 ≥ 0,

are zero due to the “symmetric integration” as well. Equations (11) represent the simplest
examples of the reduction identities. From equations (9)–(11) it obvious but the very useful
relations follows:

P σ
l;l′(m, k)ε = iεlI

σ
l′ (m, k)ε, Iσ

l;l′(m, k)ε = µlεI
σ
l′ (m, k)ε, l, l′ ∈ {1, 2}, l′ �= l. (12)

So, owing to equations (11)–(12) the quantities P ·β
JJ′(m, k) := lim

ε1,ε2→0
P ·β

JJ′(m, k)ε and P α·
JJ′(m, k) :=

lim
ε1,ε2→0

P α·
JJ′(m, k)ε, closely related to the Schwinger terms contributions (STCs) of current com-

mutators to the CWIs (5), are expressed for all Iαβ
JJ′(m, k)ε in terms of the important quantity

lim
ε1,ε2→0

[P σ
2;1(m, k)ε − P σ

1;2(m, k)ε] =

{
lim

ε1,ε2→0
[iε2Iσ

1 (m, k)ε − iε1I
σ
2 (m, k)ε]|m1=0

m2=0
,

0, if m1, m2 > 0.
(13)
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Consequently, the STCs may be nonzero only for the chiral case, m1 = m2 = 0.
2.4. Consider now the mass-isotropic case, m1 = m2 = m ≥ 0, ε1 = ε2 = ε ≥ 0, for n = 2r.

Then, due to equations (6)–(10), (13) and (3) the general CWIs (5) take simpler forms:

k1αIαβ
V J′(m, k) = 0, k1αIαβ

AJ′(m, k) = tr[γβγ′ γ̃5(−k̂2)](−2m2)I(m, k), J ′∈{V, A},

k2βIαβ
JV (m, k) = 0, k2βIαβ

JA (m, k) = tr[γαγ γ̃5k̂2](−2m2)I(m, k), J∈{V, A}, m > 0,

k1αIαβ
JJ′(m, k)|m=0 = tr[γβγ′γ(−k̂2)] lim

ε→0
[iεI(m, k)ε|m=0],

k2βIαβ
JJ′(m, k)|m=0 = tr[γαγγ′k̂2] lim

ε→0
[iεI(m, k)ε|m=0], J, J ′∈{V, A}, (14)

where Iαβ
JJ′(m, k) := lim

ε→0
Iαβ

JJ′(m, k)ε, I(m, k) := lim
ε→0

I(m, k)ε, and we make use of the relation

Iσ
1 (m, k)ε − Iσ

2 (m, k)ε = kσ
2 I(m, k)ε. It should be noted that the forms of mass-isotropic vector

and axial vector CWIs (14) are completely determined by equations (8) and (13).

3 Regular values and identities of VV, AA, etc. amplitudes

3.1. The quantities in equations (9) are associated with the s-degree homogeneous p-polynomials
in numerators of integrands. The proper divergence indices of them are equal to ν(s) := 2ω+s =
n − 4 + s, s = 0, 1, 2, 3, where ω := n/2 − 2. Therefore, the main amplitudes, Iαβ

JJ′(m, k)ε, have
the maximal divergence index, ν := ν(2) = n − 2, and the minimal one, ν − 2 ≡ ν(0) = n − 4,
respectively. Associated amplitudes, D·β

JJ′(m, k)ε, Dα·
JJ′(m, k)ε, P ·β

JJ′(m, k)ε, P α·
JJ′(m, k)ε, have

corresponding divergence indices ν + 1 ≡ ν(3) = n − 1 and ν − 1 ≡ ν(1) = n − 3 respectively,
but M ·β

JJ′(m, k)ε, M α·
JJ′(m, k)ε have merely the proper divergence index ν − 1 ≡ ν(1) = n − 3.

It is important to stress that I(m, k)ε is the constituent of Iαβ
JJ′(m, k)ε for all J, J ′ ∈ {V, A}.

Similarly, Iσ
1 (m, k)ε and Iσ

2 (m, k)ε are constituents of D·β
JJ′(m, k)ε, Dα·

JJ′(m, k)ε, P ·β
JJ′(m, k)ε,

P α·
JJ′(m, k)ε, M ·β

JJ′(m, k)ε, M α·
JJ′(m, k)ε for all J, J ′ ∈ {V, A} as well. We have here examples

of the general state of affairs, when precisely the same function can be involved in different
expressions and relations simultaneously: in our case, in the vector and axial vector CWIs.

3.2. This reasonably raises the following question. Can we construct such regular (finite) va-
lues of quantities (1)–(3) which satisfy the relations (4) and the vector and axial vector CWIs (5)
simultaneously as well? The answer is yes, we can. Such an universal, high-efficient, and invari-
ant renormalization procedure which is applicable on equal grounds both to renormalizable and
nonrenormalizable theories has been constructed by the author [10–13] and was named as the
self-consistent renormalization (SCR). The SCR is based on ideas of the Bogoliubov–Parasiuk
R-operation [14–16] and is supplemented with recurrence, compatibility, and differential rela-
tions fixing a renormalization arbitrariness of the R-operation in some universal way based on
mathematical properties of Feynman amplitudes only.

3.3. Regular values(Rν
0 I)αβ

JJ′(m, k)ε,(Rν+1
0 D)·β

JJ′(m, k)ε,(Rν+1
0 D)α·

JJ′(m, k)ε,(Rν+1
0 P )·β

JJ′(m, k)ε,
(Rν+1

0 P )α·
JJ′(m, k)ε, (Rν+1

0 M)·β
JJ′(m, k)ε, (Rν+1

0 M)α·
JJ′(m, k)ε, obtained in the framework of the

SCR retain completely the structure of equations (6)–(8) in which the quantities I(m, k)ε,
Iστ
ll′ (m, k)ε, Iσ

l (m, k)ε, Iσ
l;l′(m, k)ε, P σ

l;l′(m, k)ε are replaced respectively by their regular values
that are given by means of the following α-parametric integral representations:

(Rν
0 I)(m, k)ε

(Rν
0 I)στ

ll′ (m, k)ε

(Rν+1
0 I)σ

l (m, k)ε

(Rν+1
0 I)σ

l;l′(m, k)ε

(Rν+1
0 P )σ

l;l′(m, k)ε

 = Cg

∫
Σ1

dµ(α)
∆n/2



(Rν
0I)(α, m, k)ε

(Rν
0I)στ

ll′ (α, m, k)ε

(Rν+1
0 I)σ

l (α, m, k)ε

(Rν+1
0 I)σ

l;l′(α, m, k)ε

(Rν+1
0 P)σ

l;l′(α, m, k)ε

 , Cg := (2π)nδ(k)b(g), (15)
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where the integrands,

(Rν
0I)(α, m, k)ε := (Rν

0F)00,

(Rν
0I)στ

ll′ (α, m, k)ε := Y σ
l Y τ

l′ (R
ν
0F)20 + (−2)−1Xll′g

στ (Rν
0F)21,

(Rν+1
0 I)σ

l (α, m, k)ε := Y σ
l (Rν+1

0 F)10,

(Rν+1
0 I)σ

l;l′(α, m, k)ε := Y 2
l Y σ

l′ (Rν+1
0 F)30 + (−2)−1{nXllY

σ
l′ + 2Xll′Y

σ
l }(Rν+1

0 F)31, (16)

(Rν+1
0 P)σ

l;l′(α, m, k)ε := m2
l (R

ν+1
0 I)σ

l′ (α, m, k)ε − (Rν+1
0 I)σ

l;l′(α, m, k)ε, (17)

are defined in terms of some basic functions, (Rν
0F)00, (Rν

0F)20, (Rν
0F)21, and (Rν+1

0 F)10,
(Rν+1

0 F)30, (Rν+1
0 F)31, associated with homogeneous polynomials of the degree s − 2j, s =

0, 1, 2, 3, j = 0, [s/2], in external momenta k1, k2. Each monomial of the latter is a product of
s − 2j linear Kirchhoff forms Yl, l = 1, 2, and j line-correlator functions Xll′ , l, l′ ∈ {1, 2}.

The explicit form of the basic functions (Rν
0F)sj , (Rν+1

0 F)sj , and the determining numbers
νsj , λsj , ν1

sj , λ1
sj , and ω appearing in them are as follows:

(Rν
0F)sj := M ω+j

ε Γ(λsj)/Γ(2 + νsj)Z
1+νsj
ε 2F1(1, λsj ; 2 + νsj ; Zε),

νsj := [(ν − s)/2] + j, λsj := − ω − j + 1 + νsj , ω := n/2 − 2, (18)

(Rν+1
0 F)sj := M ω+j

ε Γ(λ1
sj)/Γ(2 + ν1

sj)Z
1+ν1

sj
ε 2F1(1, λ1

sj ; 2 + ν1
sj ; Zε),

ν1
sj := [(ν + 1 − s)/2] + j, λ1

sj := − ω − j + 1 + ν1
sj , ω := n/2 − 2. (19)

The [(ν − s)/2] and [(ν + 1 − s)/2] in equations (18)–(19) are integral parts of the numbers
(ν − s)/2 and (ν + 1− s)/2 respectively. There exist the following compatibility and recurrence
relations:

(Rν
0F)sj = Fsj := M ω+j

ε (1 − Zε)ω+j Γ(−ω − j), if νsj ≤ −1, (20)

(Rν
0F)sj = (Rν+1

0 F)s+1,j , (21)
Mε (Rν

0F)00 − A (Rν
0F)20 + (ω + 1) (Rν

0F)21 = 0,

Mε (Rν+1
0 F)10 − A (Rν+1

0 F)30 + (ω + 1) (Rν+1
0 F)31 = 0, (22)

between the basic functions (Rν
0F)sj , (Rν+1

0 F)sj . In fact, due to compatibility relations (21)
both recurrence relations (22) are different forms of the common one.

The α-parametric functions Zε ≡ Z(α, m, k)ε, Mε ≡ M(α, m)ε, A ≡ A(α, k), ∆ ≡ ∆(α),
Yl ≡ Yl(α, k), and Xll′ ≡ Xll′(α) entering into equations (16)–(19) have the form:

Zε := A/Mε, Mε := α1µ1ε + α2µ2ε, A := ∆β1β2 k2
2 = α1Y

2
1 + α2Y

2
2 , ∆:= α1 + α2,

Y1 := β2 k2, Y2 := −β1 k2, βl := αl/∆, Xll′ := ∆−1, l, l′ ∈ {1, 2}, Y2 − Y1 = −k2 = k1,

Y1 · Y2 = −A/∆, Y 2
l = −A/∆ + βl′k

2
2, αlY

2
l = βl′A, l′ �= l, β1 + β2 = 1. (23)

The integration measure dµ(α), the integration region Σ1, the metric dependent constant b(g),
and the overall δ-function δ(k) are defined as

dµ(α) := δ(1 − α1 − α2)dα1 dα2, Σ1 := {αl|αl ≥ 0, ∀ l, α1 + α2 = 1},
b(g) := (πn/2ip)/(2π)n, δ(k) := δ(−k1 − k2), p – number of positive squares in g. (24)

3.4. From equations (6)–(8), (15)–(17) and (23) more specific formulae follows. So, the
regular values of the main FAs (1), reduction identities (11), and their consequences take the
form:

(Rν
0 I)αβ

JJ′(m, k)ε = Cg

∫
Σ1

dµ(α)
∆n/2

{
tr[γαγγβγ′] m1m2(Rν

0F)00

+ tr[γαγk̂2γ
βγ′k̂2](−β1β2)(Rν

0F)20 + tr[γαγγσγβγ′γσ](−1/2)∆−1(Rν
0F)21

}
, (25)
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(Rν+1
0 P )σ

lε;l′(m, k)ε = (−1)lkσ
2 Cg

∫
Σ1

dµ(α)
∆n/2

{
µlεβl(Rν+1

0 F)10

− βlY
2
l (Rν+1

0 F)30 + [(n/2)βl − βl′ ]∆−1(Rν+1
0 F)31

}
= 0, l, l′ ∈ {1, 2}, l′ �= l, (26)

(Rν+1
0 P2ε−1ε)σ(m, k)ε := (Rν+1

0 P )σ
2ε;1(m, k)ε − (Rν+1

0 P )σ
1ε;2(m, k)ε = 0

= kσ
2 Cg

∫
Σ1

dµ(α)
∆n/2

1
∆

{
Mε(Rν+1

0 F)10 − A(Rν+1
0 F)30 + (ω + 1)(Rν+1

0 F)31
}

= 0, (27)

(Rν+1
0 I)σ

1 (m, k)ε − (Rν+1
0 I)σ

2 (m, k)ε = kσ
2 Cg

∫
Σ1

dµ(α)
∆n/2

(Rν+1
0 F)10 = kσ

2 (Rν
0 I)(m, k)ε. (28)

3.5. After isolating tensor structures in regular values of all amplitudes involving in CWIs (5),
for example, k1α(Rν

0 I)αβ
JJ′(m, k)ε = tr[γβγ′γ(−k̂2)](Rν

0 I)JJ′;1(m, k)ε, k2β(Rν
0 I)αβ

JJ′(m, k)ε =
tr[γαγγ′k̂2](Rν

0 I)JJ′;2(m, k)ε, (Rν+1
0 D)·β

JJ′(m, k)ε =tr[γβγ′γ(−k̂2)](Rν+1
0 D)JJ′;1(m, k)ε, (Rν+1

0 D)α·
JJ′

= tr[γαγγ′k̂2](Rν+1
0 D)JJ′;2(m, k)ε, etc., the scalar factors of them can be represented as follows:

(Rν
0 I)JJ′;i(m, k)ε

(Rν+1
0 D)JJ′;i(m, k)ε

(Rν+1
0 P )JJ′;i(m, k)ε

(Rν+1
0 M)JJ′;i(m, k)ε

 = Cg

∫
Σ1

dµ(α)
∆n/2


(Rν

0I)JJ′;i(α, m, k)ε

(Rν+1
0 D)JJ′;i(α, m, k)ε

(Rν+1
0 P)JJ′;i(α, m, k)ε

(Rν+1
0 M)JJ′;i(α, m, k)ε

 , i = 1, 2, (29)

(Rν
0I)JJ′;i(α, m, k)ε := m1m2(−1)πi(Rν

0F)00 − A/∆(Rν
0F)20 + (ω + 1)/∆(Rν

0F)21
∼= (

m1m2(−1)πi − Mε/∆
)
(Rν

0F)00,

(Rν+1
0 D)JJ′;i(α, m, k)ε := m1m2(−1)πi(Rν+1

0 F)10 − A/∆(Rν+1
0 F)30 + (ω + 1)/∆(Rν+1

0 F)31
∼= (

m1m2(−1)πi − Mε/∆
)
(Rν+1

0 F)10,

(Rν+1
0 P)JJ′;i(α, m, k)ε := ∆−1

{
M(Rν+1

0 F)10 − A(Rν+1
0 F)30 + (ω + 1)(Rν+1

0 F)31
}

∼= iE/∆(Rν+1
0 F)10, M := α1m

2
1 + α2m

2
2, E := α1ε1 + α2ε2,

(Rν+1
0 M)JJ′;i(α, m, k)ε :=

(
m1m2(−1)πi − M/∆

)
(Rν+1

0 F)10, i = 1, 2. (30)

The second lines of equations (30) are due to equation (27). The congruence relation A(α, m, k)
∼= B(α, m, k) denotes the equality

∫
Σ1 dµ(α)∆−n/2A(α, m, k) =

∫
Σ1 dµ(α)∆−n/2B(α, m, k).

3.6. Taking into account compatibility relations (21), the identities are verified:

(Rν
0 I)JJ′;i(m, k)ε = (Rν+1

0 D)JJ′;i(m, k)ε = (Rν+1
0 P )JJ′;i(m, k)ε + (Rν+1

0 M)JJ′;i(m, k)ε, (31)

i = 1, 2, which produce the general mass-anisotropic vector and axial vector CWIs,

k1α(Rν
0 I)αβ

JJ′(m, k)ε = (Rν+1
0 D)·β

JJ′(m, k)ε = (Rν+1
0 P )·β

JJ′(m, k)ε + (Rν+1
0 M)·β

JJ′(m, k)ε,

k2β(Rν
0 I)αβ

JJ′(m, k)ε = (Rν+1
0 D)α·

JJ′(m, k)ε = (Rν+1
0 P )α·

JJ′(m, k)ε + (Rν+1
0 M)α·

JJ′(m, k)ε, (32)

but now for regular values; it is seen that equations (32) retain the form of equations (5).
In the mass-isotropic case, m1 = m2 = m ≥ 0, ε1 = ε2 = ε ≥ 0, from equations (28)–(32)

imply the following mass-isotropic CWIs for ε-limiting values of amplitudes:

k1α(Rν
0 I)αβ

V J′(m, k) = 0, k1α(Rν
0 I)αβ

AJ′(m, k) = tr[γβγ′ γ̃5(−k̂2)](−2m2)(Rν
0 I)(m, k),

k2β(Rν
0 I)αβ

JV (m, k) = 0, k2β(Rν
0 I)αβ

JA (m, k) = tr[γαγ γ̃5k̂2](−2m2)(Rν
0 I)(m, k), m > 0,

k1α(Rν
0 I)αβ

JJ′(m, k)|m=0 = tr [γβγ′γ(−k̂2)] lim
ε→0

[iε (Rν
0 I)(m, k)ε|m=0],

k2β(Rν
0 I)αβ

JJ′(m, k)|m=0 = tr [γαγγ′k̂2] lim
ε→0

[iε (Rν
0 I)(m, k)ε|m=0], J, J ′∈{V, A}, (33)

which retain the form of equations (14). Recall that the proper divergence index of I(m, k)ε is
ν − 2.
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4 Logical trap as a cause of quantum anomalies

4.1. Up till now no explicit forms of the basic functions (Rν
0F)sj and (Rν+1

0 F)sj have been
used. In fact, we have exploited only the following items: i) (Rν

0F)sj and (Rν+1
0 F)sj are regular

functions in the vicinity of zero values of external momenta k2 that is denoted by the subscript
0 on R; ii) each (Rν

0F)sj or (Rν+1
0 F)sj , which are defined in some reasonable way according

to indices ν or ν + 1 that is denoted by superscripts ν or ν + 1 on R respectively, take the
same value in all relations; iii) the compatibility relation (21); iv) the reduction identity (27)
which produces the more convenient second form of quantities in equations (30) and predicts the
recurrence relation (22) as well. It should be particularly emphasized as to pure mathematical
nature of equation (27) associated with some symmetry property of integrals under consideration.

In the mass-isotropic case, m1 = m2 = m > 0, the mass term functions (Rν+1
0 M)JJ′;i(m, k)

are zero for vector CWIs and are expressed in terms of the quantity (−2m2)(Rν
0 I)(m, k) for axial

vector CWIs. In so doing, the Schwinger term contribution (STC) functions (Rν+1
0 P )JJ′;i(m, k),

closely associated with the reduction identity (27), are zero for both vector and axial vector
CWIs. Nevertheless, in the commonly used renormalization techniques (e.g. in the minimal
renormalization schemes) the mass term functions for axial vector CWIs are expressed as rule
in terms of the quantity (−2m2)(Rν−2

0 I)(m, k), calculated according to its proper divergence
index ν − 2, and in addition it is required the zero value for STC functions that provides
the conserved vector CWIs. In so doing, we fall into a logical trap since two different regular
values, (Rν−2

0 I)(m, k) and (Rν
0 I)(m, k), are prescribed to the same UV-divergent quantity I(m, k)

involving into two different relations that is prohibited. As a result, we come to the well-known
quantum anomalies. It remains to show that just the function (Rν

0F)00 rather than (Rν−2
0 F)00 =

(Rν
0F)20 to secure realizability of the identity Mε(Rν

0F)00 − A(Rν
0F)20 + (ω + 1)(Rν

0F)21 = 0.
4.2. If n = 2r + δn, δn = 0, 1, then ω = r − 2 + δn/2, and from (18) it follows: ν00 = r − 1,

λ00 = 2 − δn/2; ν10 = r − 2 + δn, λ10 = 1 + δn/2; ν20 = r − 2, λ20 = 1 − δn/2; ν21 = r − 1,
λ21 = 1 − δn/2. As a result, the explicit form of basic functions (Rν

0F)sj take the form:

(Rν
0F)00 = M ω

ε Γ(2 − δn/2)/Γ(r + 1)Z r
ε 2F1(1, 2 − δn/2; r + 1; Zε),

(Rν
0F)20 = M ω

ε Γ(1 − δn/2)/Γ(r)Z r−1
ε 2F1(1, 1 − δn/2; r; Zε),

(Rν
0F)21 = M ω+1

ε Γ(1 − δn/2)/Γ(r + 1)Z r
ε 2F1(1, 1 − δn/2; r + 1; Zε),

(Rν
0F)10 = δn(Rν

0F)00 + (1 − δn)(Rν
0F)20. (34)

Properties of the 2F1, see Ref. [17], give rise to the important relations

(Rν
0F)00 − (Rν−2

0 F)00 = (Rν
0F)00 − (Rν

0F)20 = −M ω
ε Γ(λ00 − 1)/Γ(1 + ν00)Z ν00

ε , (35)

(Rν
0F)00

Mε→0∼ (−1)Γ(λ00 − 1)A ν00

Γ(1 + ν00)M λ00−1
ε

, if ν00 ≥ 0 and λ00 − 1 > 0. (36)

By using equations (34) and factorizing of M ω+1
ε Z r

ε Γ(1 − δn/2)/Γ(r + 1) in equation (22)
one obtains a particular case of the recurrence relation between contiguous hypergeometric
functions 2F1:

b 2F1(a, b + 1; c; Zε) − (c − 1) 2F1(a, b; c − 1; Zε) + (c − b − 1) 2F1(a, b; c; Zε) = 0, (37)

[see [17], Sec. (2.8)(eq. 42)] for a = 1, b = 1 − δn/2, c = r + 1; c − b − 1 = r − 1 + δn/2 = ω + 1.
Equations (34)–(37) show clearly that just the function (Rν

0F)00 rather than (Rν−2
0 F)00 =

(Rν
0F)20 satisfy to the recurrence relation (22). In the mass-isotropic case, m1 = m2 = m ≥ 0,

from equations (35)–(36) imply the phenomenologically important limiting values:

lim
ε→0

[iε(Rν
0 I)(m, k)ε|m=0] = Cg(k2

2)
r−1Γ(r)/Γ(2r), lim

ε→0
[iε(Rν

0 I)(m, k)ε|m�=0] = 0,

lim
m→0

[−2m2(Rν
0 I)(m, k)|m�=0] = Cg(k2

2)
r−12Γ(r)/Γ(2r), n = 2r, (38)
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of quantities appearing in CWIs (32)–(33) and involving the function (Rν
0 I)(m, k)ε. In the

general mass-anisotropic case, equations (38) must be replaced by

(Rν
0 I)JJ′;i(m, k)

m1, m2→0∼ Cg(k2
2)

r−1Γ(r)/Γ(2r)
[
1 − (−1)πix2F1(1, r; 2r; 1 − x2)

]
, (39)

where x := m1/m2, see Ref. [9]. In fact, equations (38) are particular cases of (39) since
for a2r(x) := x2F1(1, r; 2r; 1 − x2) there holds a2r(x) = a2r(1/x) and a2r(0) = a2r(∞) = 0,
a2r(1) = 1.

4.3. So, it is shown that the genuine algorithmic cause of quantum anomalies is of prescribing
two different regular values, (Rν−2

0 I)(m, k) and (Rν
0 I)(m, k), to the same UV-divergent quantity

I(m, k) involved into two different Ward identities that is logically prohibited. Quantum anoma-
lies of triangle amplitudes are dictated by the same cause. The SCR [10–13], that makes use
of the logically motivated oversubtracted operations, produces such regular values which satisfy
the vector and axial vector canonical Ward identities simultaneously.
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