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Evolution of the renormgroup algorithm and the related renormgroup symmetry, introduced
in mathematical physics for solutions of boundary-value problems based on differential equa-
tions, is reviewed. We discuss the essential progress made recently in the application of this
algorithm to models with integral equations. Several physical illustrations from nonlinear
optics and plasma physics demonstrate the potentialities of the algorithm for models with
nonlocal terms in the form of the linear solution functionals.

1 Introduction

The notion of the Renormalization Group Symmetry (RGS) was introduced in mathematical
physics in the beginning of the nineties of the last century [1, 2] (see also review papers [3, 4]).
It marked the proliferation of the Renormalization Group (RG) ideas [5,6] from Quantum Field
Theory (QFT) to the problems of mathematical physics with the goal that was the same as in
QFT: to improve the perturbation theory (PT) solutions and to correct the behavior of these
solutions in the vicinity of a singularity. However, the form of the practical implementation
of the RG ideas in other fields of theoretical and mathematical physics frequently differs from
that used in QFT (see, e.g. the review paper [7]). For boundary value problems (b.v.p.) in
mathematical physics that are based on differential equations (DEs) quite new RG algorithm
was elaborated [1–4, 8]. In order to clarify this difference we recall that the RG method, as
formulated by N.N. Bogoliubov and one of the authors [5] for QFT problems, employs the
exact group property of a solution with the goal to improve the approximate PT solution. One
of the well-known forms of this property is a functional equation (which exhibits the group
composition law) for the invariant charge in QFT. Revealing of this symmetry (i.e. the solution
group property) in every particular case is a tricky procedure in theoretical physics and is the
algorithmic deficiency of the method [9].

In becoming to mathematical physics we usually deal with b.v.p. that are based on DEs.
Symmetries of these equations can be obtained in a regular way using the Lie group analysis
technique. This fact had a profound impact on creating an algorithm that joined the RG ideology
from QFT with a regular procedure of constructing symmetries for b.v.p. It was precisely this
algorithm that brought to being the notion of the “renormalization group symmetry” (RGS) for
b.v.p. solutions. There were two reasons for calling them RGS: firstly, from mathematical point
of view the calculational algorithm for these symmetries is very similar to that used in modern
group analysis and, secondly, they are applied to PT solutions with the goal usual to QFT, i.e.
to improve these PT solutions.

Early in the development of RGS algorithm in mathematical physics it was mainly applied
to mathematical problems based on DEs, though formally this algorithm may be used in any
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problem that admit the regular procedure for calculating symmetries for the involved equations.
In this sense an application area for RGS algorithm can be substantially expanded to include
objects (e.g. integral or integro-differential equations) that traditionally were beyond the scope
of the classical group analysis. These integral equations may form the basis of a problem, or they
may appear as specific objects for applying RGS algorithm for b.v.p. based on DEs. Frequently
we are interested not in a solution itself but in some integral solution characteristic, i.e. the
solution functional. This characteristic may appear as a result of integrating with respect to any
independent variable or on transition to Fourier variables. In this case RGS algorithm may be
applied not for improving a particular solution with the subsequent calculation of some integral
characteristic of this solution but for improving the functional of a perturbative solution. In
other words this algorithm may restore behavior of an integral characteristic without calculating
a solution in an explicit form.

In this report along with the description of the modified RGS algorithm we present also
several new illustrations which demonstrate its efficiency.

2 RGS algorithm for nonlocal problems

The scheme for constructing and application of RGS to b.v.p. based on DEs was discussed in
details in our recent publications (see, e.g. review papers [4, 8]). Here we briefly touch upon
basic stages of this scheme, paying special attention to changes that should be introduced to
make the RGS algorithm applicable to nonlocal problems.

We start with a mathematical model, defined by a system of ν ≥ 1 differential and integral
equations for functions u = {uα}, α = 1, . . . , m of x = {xi}, i = 1, . . . , n,

[E] : Eν(u(x)) = 0, (1)

with appropriate boundary (initial) conditions. Nonlocal terms in these equations depend on
integrals of u. We suppose also that we know some approximate solution, Uα, expressed, say,
in the form of the truncated PT series in powers of some small parameter or a small distance
from the boundary where this solution is given.

Then the general scheme for RGS algorithm, which is depicted on Fig. 1, is realized as
a sequence of steps which are:

I constructing the specific RG manifold,

II calculating the symmetry group for this RG manifold,

III restricting this group on a particular (usually approximate) b.v.p. solution that gives the
desired RGS,

IV using the RGS obtained to calculate the particular analytical b.v.p. solution.

In the next subsections we consider these steps in more detail.

2.1 Constructing the RG manifold

The key idea of the first step consists in involving in group transformations the parameters and
boundary conditions that define the particular solution of the problem. This is achieved by
constructing the special RG manifold RM that we assume to have the form of s differential
equations of the k-th order and q nonlocal relations,

Fσ(z, u, u(1), . . . , u(k)) = 0, σ = 1, . . . , s, (2)

Fσ(z, u, u(1), . . . , u(r), A(u)) = 0, σ = 1 + s, . . . , q + s. (3)
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Figure 1. General scheme for construction of RGS.

We use the traditional for the differential algebra notations for independent variables z = {zi},
differential variables u = {uα} with the subsequent derivatives u(1) = {uα

i }, u(2) = {uα
ij},

i, j = 1, . . . , n + l. These variables are related by the operator of the total differentiation Di,

uα
i = Di (uα) , uα

ij = Dj (uα
i ) DjDi (uα) , . . . , Di =

∂

∂zi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ · · · . (4)

The parameters p = {pj}, j = 1, . . . , l are included in z = {x, p} and nonlocal variables are
given by integral relations

A(u) =
∫

F(u(z))dz. (5)

Nonlocal relations (3) characterize the principal difference of RM for nonlocal models as com-
pared to b.v.p. for DEs, where we have the differential RG manifold.

The particular form of the realization of the first step depends both on the form of input
equations and the form of boundary (initial) conditions and is inspired by PT solution as well.
In general case RM does not coincide with E. We can indicate several possible routines to the
problem, that were formulated for local models (see, e.g., [4]) and remain valid also for nonlocal
models:

• One can extend the space of variables involved in the group transformations and in fact
is realized in equations (2)–(3), where we add parameters p that enter a solution both via
equations and/or via boundary (initial) conditions. Adding derivatives with respect to p
extends the space of differential variables. The extension of the space of independent and
differentiable variables frequently transforms the basic equations (1) into RM, however
the non-locality is preserved.

• Another possibility employs reformulating the boundary conditions in terms of embedding
equations or differential constraints. The key idea here is to treat simultaneously the
solution of the b.v.p. as an analytic function of the independent variables and the boun-
dary parameters b = {xi

0, u
α
0 }. Differentiation with respect to these parameters leads to

additional DEs (embedding equations) that, together with the basic equations (1), form
the RM. In general, different boundary conditions for the same input equations lead to
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different embedding equations. In the simplest case embedding equations have the form
of evolution first-order partial DEs, however, more complicated situations are possible.

A more general approach is based on reformulating the boundary conditions in terms of
differential constraints that are compatible with the basic DEs. In particular these differen-
tial constraints can arise while calculating the higher order (or Lie–Bäcklund) symmetries
for the basic or embedding equations.

• In the case when the basic equations (1) contain a small parameter µ, the desired appro-
ximate manifold RM can be obtained by simplification of the equations (1) and use of
“perturbation methods of group analysis” (see Vol. 3, Chapter 2, p. 31 in [10]). The main
idea here is to consider a simplified (µ = 0) model, which admits a wider symmetry group
in comparison with the case µ �= 0. When we take the contributions from small µ into
account, this symmetry is inherited by the equations (1), which results in some additional
terms, corrections in powers of µ, in group generators. As a result the same representation
arises for the RGS generators that are calculated at the next steps of the algorithm.

The routines mentioned do not exhaust all possibilities for constructing RM, rather they
point to different possibilities for the realization of the first step. In every particular case the
choice is defined by the model equations (1) and the form of the PT solution.

2.2 Calculation of the admitted group

The next step is the calculation of the most general symmetry group G, admitted by RM
(2)–(3). Precisely here we need the substantial modification of the algorithm as compared to
differential RG manifold. Indeed, in application to RM defined by DEs, e.g. (2), we deal with
a local group of transformations in the space of differential functions A that leaves these equa-
tions unaltered. The classical group algorithm for finding these transformations employs the
Lie’s infinitesimal technique that replaces the procedure of solving original, possibly nonlin-
ear, equations by analyzing linear equations for coordinates of group generators, determining
equations. In constructing RG symmetries several generalizations of the classical Lie algorithm
that are in use in modern group analysis may be employed (see [10–15] and references therein),
i.e. approximate symmetries, non-classical and conditional symmetries, non-local symmetries,
discrete symmetries, etc.

This situation drastically changes when moving to RG manifold (3) given by integro-diffe-
rential equations or to solution functionals, introduced by integral terms. The major obstacle
for the application of Lie’s infinitesimal techniques to integro-differential equations (or infinite
systems of differential equations) is that the frames (see, e.g. [13]) of these equations are not
locally defined in the space of differential functions. In consequence, the crucial idea of splitting
of determining equations into over-determined systems, commonly used in the classical Lie group
analysis, fails. The next problem in application of the symmetry group obtained is the problem
of prolongation of the symmetry group operator on solution functionals that have the form of
nonlocal (integral) variables. Below we indicate several routines to the problem and describe
common approaches in application to nonlocal objects.

Loosely speaking, different known approaches to calculating symmetry groups for integro-
differential equations can be divided into two large groups: indirect and direct methods.

Algorithms of the first group rest on the possibility to replace in any way input nonlocal
(integro-differential) equations by a system of differential equations. Then the resulting system of
differential equations is analyzed using standard methods of a classical Lie group analysis. Here
we point on two different ways of reducing nonlocal equations to differential ones: a) method of
moments that was realized to calculate Lie point symmetry group for Vlasov–Maxwell equations
in plasma theory [16] and for Benney, Vlasov-type and Boltzmann-type kinetic equations [17,18]
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and b) method of boundary-differential equations that was developed in [19] on basis of the
concept of covering and applied to a coagulation kinetic equation.

With the goal to modify the RGS algorithm we employ methods of the second group, namely,
direct methods of finding symmetries that were developed in [20–22] and applied to find sym-
metries of kinetic Boltzmann equation, the equations of motion of viscoelastic medium and
Vlasov–Maxwell equations of plasma theory. In this method the utilization of the Lie–Bäcklund
group and the canonical group representation is of principal value, i.e. instead of the traditional
form for the group generator

X = ξi∂zi + ηα∂uα + ζα
i ∂uα

i
+ ζα

i1i2∂uα
i1i2

+ · · · ,

ζα
i = Di(κα) + ξjuα

ij , ζα
i1i2 = Di1Di2(κ

α) + ξjuα
ji1i2 , κ

α = ηα − ξiuα
i , (6)

with coordinates ξi([z, u]), ηα([z, u]), ζα
i ([z, u]), . . ., we use the equivalent operator Y that is

known as the canonical representation for X,

X ∼ Y = X − ξiDi = κ
α∂uα . (7)

It is essential that only dependent variables uα are involved in the group infinitesimal transfor-
mation with the generator (7) and the group parameter a whereas independent variables zi do
not vary

u′α = uα + aκ
α + O

(
a2
)
, z′i = zi. (8)

Hence one can define the local group G of point transformations as a symmetry group of integro-
differential equations (3) iff for any a the functions Fσ do not vary [20]. Differentiating the
appropriate invariance condition with respect to the group parameter a and assuming a → 0
gives the determining equations. In contrast to the case of input differential equations these
determining equations are in general also integro-differential.

The invariance criterion for Fσ with respect to the admitted group can be expressed in an
infinitesimal form using the canonical group operator Y ,

Y Fσ

∣∣∣
[Fσ ]

= 0, σ = 1 + s, . . . , q + s, where Y ≡
∫

dzκ (z)
δ

δu (z)
, (9)

and the symbol |[Fσ ] means evaluation on the manifold, generated by (3). Here with the goal
to generalize the action of a canonical group operator not only on differential functions but on
functionals as well we use variational differentiation in the definition of Y [22]. One can verify
by direct calculation that the action of Y on any differential function and its derivatives, e.g.,
u, uz, . . . produces the usual result: Y u = κ, Y uz = Dz(κ) and so on. Hence, if Fσ = 0
describe usual DEs then formulas (9) lead to standard local determining equations, while for
Fσ = 0 having the form of integro-differential equations formulas (9) can be treated as nonlocal
determining equations as they depend both on local and nonlocal variables.

In order to find solutions of determining equations one can use different approaches, e.g.
expanding coordinates of group generator into formal power series and equating coefficients of
various powers [20]. However there exists a more traditional way. As we treat local and nonlocal
variables in determining equations as independent it is possible to separate these equations into
local and nonlocal. The procedure of solving local determining equations is fulfilled in a standard
way using Lie algorithm based on splitting the system of over-determined equations with respect
to local variables and their derivatives. As a result we get expressions for coordinates of group
generator that define the so-called group of intermediate symmetry [22]. In the similar manner
the solution of nonlocal determining equations is fulfilled using the information borrowed from
an intermediate symmetry and by “variational” splitting of nonlocal determining equations using
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the procedure of variational differentiation. Therefore, the algorithm of finding symmetries of
nonlocal equations appears as an algorithmic procedure that consists of a sequence of several
steps:

• defining the set of local group variables,

• constructing determining equations on basis of the infinitesimal criterion of invariance that
employs the generalization of the definition of the canonical operator,

• separating determining equations into local and nonlocal,

• solving local determining equations using a standard Lie algorithm,

• solving nonlocal determining equations using the procedure of variational differentiation.

This procedure generalizes the second step of the RGS algorithm in case of the integral or
integro-differential manifold (2)–(3). As a result of this step we get infinitesimal operators
(group generators) which correspond to the admitted vector field and form a Lie algebra with
a general element

Y =
∑

j

CjYj , Yj = κ
α
j ∂uα ≡ (ηα

j − ξi
ju

α
i

)
∂uα , (10)

where Cj are arbitrary constants.
To complete we describe the procedure of prolongation of the symmetry group on nonlocal

variables, say, in the form of the integral relation (5). To fulfill this procedure one should first
rewrite the operator, say, Y , in a canonical form and then formally prolong this operator on the
nonlocal variable A

Y + κ
A∂A ≡ κ∂u + κ

A∂A. (11)

The integral relation between κ and κ
A is obtained by applying the generator (11) to the

definition of A, i.e. to (5). Substituting the explicit expression for the coordinate κ of the
known operator Y and calculating integrals obtained gives the desired coordinate κ

A,

κ
A =

∫
δA(u)
δu(z)

κ(z) dz ≡
∫

δF(u(z′))
δu(z)

κ(z) dzdz′ =
∫

Fuκ(z) dz. (12)

The group defined by the generators (10) is in general wider than the desired RG, that usually
appears as its subgroup. As the RGS is related to a particular b.v.p. solution, it can be revealed
by restricting the admitted group G on a manifold defined by this given solution.

2.3 Restriction the group on a solution

Mathematically, this procedure that forms the third step of the RG algorithm appears as checking
the vanishing condition for the linear combination of coordinates κ

α
j of the operator (10) on

a particular approximate (or exact) b.v.p. solution Uα(z)

∑

j

Cj
κ

α
j ≡

∑
j

Cj
(
ηα

j − ξi
ju

α
i

) ∣∣∣uα = Uα(z)

= 0. (13)

While the general form of the condition given by (13) is the same for any b.v.p. solution, the
specific way of realization of the restriction procedure in every particular case employs a well-
defined PT solution for the concrete b.v.p. This is depicted by the additional arrow that links
two objects on the general scheme, namely “PT solution” and “RGS generators”.
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Evaluating (13) on a particular b.v.p. solution, Uα(z), transforms the system of DEs for
the group invariants into algebraic relations. Firstly, it gives relations between the Cj thus
“combining” different coordinates of the group generators Yj admitted by the RM (2)–(3).
Secondly, it eliminates (partially or entirely) the arbitrariness that may appear in the coordinates
ξi, ηα in the case of an infinite group G.

Generally, the restriction procedure reduces the dimension of G. Hence, the general ele-
ment (10) of the group G after the fulfillment of a restriction procedure is expressed as a linear
combination of the new generators Ri with the coordinates κ̂

i, η̂α
j and ξ̂i

j

Y ⇒ R =
∑

j

BjRj , Rj = κ̂
α
j ∂uα ≡

(
η̂α

j − ξ̂i
ju

α
i

)
∂uα , (14)

where the Bj are arbitrary constants. The set of RGS generators Ri, each containing the desired
b.v.p. solution in its invariant manifold, define a group of transformations that we also refer to
as a renormgroup similar to the variant with RM defined by DEs.

The above prescribed three steps entirely define a regular algorithm for RGS construction
but do not touch on how a b.v.p. solution is found. Hence, one more important, fourth step
should be added. It consists of using the RGS generators to find analytical expressions for the
new, “improved”, solution of the b.v.p.

2.4 Construction of the RG invariant solution

Mathematically, the fourth step makes use of the RG invariance conditions that are given
by a combined system of (2)–(3) and the vanishing condition for the linear combination of
coordinates κ̂

α
j of the canonical operator equivalent to (14),∑

j

Bj
κ̂

α
j ≡

∑
j

Bj
(
η̂α

j − ξ̂i
ju

α
i

)
= 0. (15)

The necessity of using RM while calculating RG invariant solutions is depicted by the additional
arrow that links these two objects on the general scheme.

One can see that the conditions (15) are akin to (13). However, in contrast to the previous
step, the differential variables u in (15) should not be replaced by an approximate expression
for the b.v.p. solution U(z), but should be treated as usual dependent variables.

For the one-parameter Lie point renormgroup, RG invariance conditions (15) lead to the first-
order partial DE that gives rise to the so-called group invariants (such as invariant couplings
in QFT) which arise as solutions of associated characteristic equations. The general solution
of the b.v.p. is now expressed in terms of these invariants. On the one hand, this is in direct
analogy with the structure of RG invariant solutions in QFT. In the general case of arbitrary
RGS the group invariance conditions obtained for a b.v.p. are not necessarily characteristic
equations for the Lie point group operator. They may appear in a more complicated form, e.g.,
as a combination of partial DEs and higher order ordinary DEs. Nevertheless, the general idea
of finding solutions to the b.v.p. in terms of RG invariant solutions remains valid.

The description of the fourth step completes the presentation of the RGS algorithm. Next we
will present several examples that illustrate the application of the algorithm to various physical
systems based on nonlocal models.

3 RGS algorithm in application to nonlocal models

3.1 Laser beam refraction in a nonlinear medium

In the section we demonstrate the application of RGS algorithm to solution functionals using
a model that describes the evolution of the laser beam intensity I(z, x) and the eikonal deriva-
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tive v(z, x) in a nonlinear medium (z > 0). These functions obey nonlinear optics equations:

vz + vvx − αIx = 0, Iz + vIx + Ivx = νIv/x; v(0, x) = 0, I(0, x) = I(x). (16)

where α is the parameter that defines the nonlinear refraction, z and x are the coordinates along
and transverse to the beam axis, respectively; ν = 1 for cylindrical beam and ν = 0 for the plane
beam geometry. Up to now there does not exist a universal algorithm for solving b.v.p. (16)
that is suitable for arbitrary boundary conditions and beam geometry. The application of the
RGS algorithm to (16) helps to construct new analytical solutions [23,4] and enables to prolong
PT solution which is valid in the vicinity of a medium boundary z � 0 up to large values of z,
and in particular in the vicinity of a solution singularity zsing.

The appearance of a singularity in the solution can be obtained using the reduced description
via two solution functionals, namely the laser beam intensity, I0(z) ≡ I(z, 0), and the second
derivative of the eikonal, W 0(z) ≡ vx(z, 0), on the beam axis, that are formally introduces as

I0(z) =
∫

dxδ(x)I(z, x), W 0(z) =
∫

dxδ(x)vx(z, x), I0(0) = 1, W 0(0) = 0. (17)

Here we present two RGS generators that describe the evolution of I0 and W 0 for the cylindrical
laser beam (ν = 1) with the parabolic intensity distribution, I(x) = 1 − x2, and for the plane
laser beam (ν = 0) with a “soliton” profile at the boundary, I(x) = cosh−2(x),

Rpar =
(
4αI0z − (1 − 2αz2

)
I0
z

)
∂I0 − (2α(1 − 2zW 0) +

(
1 − 2αz2

)
W 0

z

)
∂W 0 ,

Rsol =
(

4 − 5I0 − zI0
z + 2(I0 − 1)

I0I0
zz

(I0
z )2

)
∂I0

+

(
I0
z

I0
+ z

I0
zz

I0
− z

(
I0
z

I0

)2

− 2(I0 − 1)
[

I0
zzz

(I0
z )2

+ 2
I0
z

(I0)2
− 2

(I0
zz)

2

(I0
z )3

])
∂W 0 . (18)

These generators result from the corresponding RGS generators [23,24], prolonged on the func-
tionals (17). Utilizing RG invariance conditions (15) for the generator Rpar gives the behavior
of I0(z) and W 0(z) for the “parabolic” laser beam

I0 =
1

1 − 2αz2
, W 0 = − 2αz

1 − 2αz2
, zsing = 1/

√
2α, (19)

starting from the boundary of the nonlinear medium up to the point of the solution singularity,
z = zsing, where both the beam intensity and the eikonal derivative go to infinity. Quite simi-
larly RG invariance conditions (15) for the generator Rsol in view of the additional constraint,
(I0

z /
√

I0 − 1)|z→0 = 2
√

α, yield the behavior of I0 and W 0 for the “soliton” laser beam

z =
√

I0 − 1√
αI0

, W 0 = − 2αzI0

1 − 2αz2I0
, zsing = 1/2

√
α (20)

from the boundary up to the singularity point z = zsing, where I0 = 2. Though the formulas
(19), (20) reproduce the results that were obtained in the context of the RGS algorithm for local
models [23,24] (see also [25]) we note that the description of the solution singularity in terms of
solution functionals (17) lead to invariance conditions in the form of ordinary DEs, in contrast
to partial DEs, that arise from invariance conditions obtained for b.v.p. solutions.

3.2 RGS for a nonlinear dielectric permittivity of plasma

The next example demonstrates the application of RGS algorithm to calculating the nonlinear
dielectric permittivity (NDP) tensors of plasma. In nonlinear electrodynamics the material equa-
tion, i.e. the relation between the induced current density j(t, r) and the electric field E(t, r),
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is defined by the dependence of the electric induction D(t, r) upon the electric field E, that
frequently is given by a power series in E. Moreover, due to the temporal and spatial dispersion
the relation between the induced current and the electric field is integral (nonlocal). Hence, the
material equation has the form of an integral power series in E and in Fourier variables (denoted
by the sign “tilde”) is given by:

D̃s(k) = Ẽs(k) + i
4π

ω

∑
l

j̃(l)
s (k) = εsa(k)Ẽa(k) +

∞∑
n=2

∫
dk1 · · ·dknδ(k − k1 − · · · − kn)

× εsj1···jn(k1; . . . ; kn)Ẽj1(k1) · · · Ẽjn(kn), j̃
(l)

(k) � O(Ẽ
l
), (k) ≡ (ω, k). (21)

Comparison of two parts of this expression gives relations between NDP tensors of plasma and
the current density j̃

(l)
(k) of the given order l � 2.

In hot plasma NDP tensors are usually obtained by iterating Vlasov–Maxwell equations with
the stationary and homogeneous background distribution function f0(v), while in cold plasma
we derive NDP tensors from collisionless hydrodynamic equations. It is generally taken that
expressions for NDP tensors in hot plasma are of more general type, hence “cold” expressions
follow from them in the particular case f0(v) = δ(v). The use of RGS gives the method of
constructing “hot” expression from the “cold” ones [2, 8].

The key idea here is to express the current density j̃
(l)

(k) in hot plasma as a convolution of
a partial current density ̃(l)(k,w) with the equilibrium distribution function f0(w), depending
upon the Lagrangian velocity w,

j̃
(l)

(k) =
∫

dwf0(w)̃(l)(k,w). (22)

Then the procedure of constructing NDP tensors in hot plasma is realized as a sequence of
the following steps: a) calculating ̃(l)(k, 0) in cold plasma using collisionless hydrodynamic
equations, b) constructing ̃(l)(k,w) from ̃(l)(k, 0) for arbitrary w �= 0, c) integrating ̃(l)(k,w)

over w with the “weight” function f0(w) to get the desired expression for j̃
(l)

(k) in hot plasma,

d) making use of j̃
(l)

(k) to calculate NDP tensor in hot plasma. It is essential that the step b),
i.e. the transition from the “cold” expression for ̃(l)(k, 0) to the “hot” expression ̃(l)(k,w), is
a group transformation that is defined by the corresponding RGS generator. It is constructed
from the Lie point group, admitted by the plasma kinetic equations with Lagrangian velocity.
For example, in non-relativistic plasma the RGS generator appears as a linear combination of
the generator of Galilean transformations, prolonged on Fourier variables, and translations along
the Lagrangian velocity w,

RNDP = k∂ω + ∂w − 1
c

[
B̃, ∂Ẽ

]
+ �̃∂̃. (23)

The finite transformations defined by this three-dimensional RG have the form1

ω = ω′ + k′w, (βis/ω)Ẽs = (1/ω′)Ẽ′
i, �̃ = �̃′, ̃i = βsĩ

′
s,

k = k′, B̃ = B̃
′
=
(
c/ω′) [k′, Ẽ

′
], βis = δis + kiws/(ω − kw), (24)

and relate ̃(l)(k, 0) to ̃(l)(k,w) for arbitrary w �= 0. For example, in first order, l = 1, this
procedure gives

̃(1)
a (k, 0) = i

e2ne0

mω
Ẽa(k) ⇔ ̃c

(1)(k,w) = i
e2ne0

mω
βscβsaẼa(k), (25)

1The variables with “primes” are referred to cold plasma limit, i.e. w = 0.
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where e is the electron charge and ne0 is the equlibrium density of electrons. By substituting
these expressions into (22) and then in (21) we get the one-to-one correspondence between the
scalar dielectric permittivity in cold plasma and the corresponding tensor in hot plasma

ε(k) = 1 − 4πe2ne0

mω2
⇔ εab(k) = δab − 4πe2ne0

mω2

∫
dwf0(w)βsaβsb. (26)

The generalization of this result for the arbitrary order l is straightforward [8].

3.3 RGS algorithm for the problem of a plasma bunch expansion

The last example deals with application of RGS algorithm to the problem of ion acceleration in
an expanding collisionless plasma bunch heated by an ultra short laser pulse. Kinetic treatment
of this problem is based on a solution to the Cauchy problem for the coupled Vlasov equations for
electrons and ions in a self-consistent electric field. The use of the RGS algorithm here enables
to find a general class of kinetic solutions [26–28] for initial conditions of practical interest for
laser-plasma interactions which includes a two-temperature Maxwellian electron distribution
function (DF), a super-Gaussian electron DF, and a plasma with ion multi-species.

Let us consider an expansion of a plasma slab, which is inhomogeneous in x. The basic
system includes kinetic equations for particle DFs fα,

fα
t + vfα

x + (eα/mα)E(t, x)fα
v = 0, fα

∣∣
t=0

= fα
0 (x, v), (27)

with the additional quasi-neutrality conditions∫
dv
∑
α

eαfα = 0,

∫
dvv

∑
α

eαfα = 0. (28)

The solution to the initial-value problem is found perturbatively for t → 0 and is continued in
time using the RGS algorithm. The RGS generator is a linear combination of time translations
and the projective operator, which arises by virtue of nonlocal relations (28),

Rbunch =
(
1 + Ω2t2

)
∂t + Ω2tx∂x + Ω2(x − vt)∂v. (29)

This operator is the only one which selects the spatially symmetric initial DFs with zero mean
velocity. The value Ω can be treated as the ratio of the ion acoustic velocity to the gradient
length L0. One can easily find DFs which are invariants of the RG transformation, however for
practical applications rough integral characteristics, such as partial ion density, nq(t, r), might
be more useful,

nq(t, x) =
∫ ∞

−∞
dvf q(t, x, v). (30)

Treating nq(t, x) as the linear functional of f q we prolong (29) to get the following RG generator

Rdensity =
(
1 + Ω2t2

)
∂t + Ω2tx∂x − Ω2tnq∂nq . (31)

Finite group transformations defined by this operator lead to the ion density distribution in
terms of a universal function, defined by the initial DFs and in view of the quasi-neutrality
conditions (28),

nq =
1√

1 + Ω2t2
Nq

(
x√

1 + Ω2t2

)
, Nq =

∫ ∞

−∞
dvf q

0 . (32)

Therefore, in order to find density distribution we need not know the explicit form of the particle
DFs. This example certainly does not exhaust all possible applications of RGS algorithm to
plasma dynamics, rather it points to some feasible fields of application (see, e.g. [28]).



860 V.F. Kovalev and D.V. Shirkov

4 Conclusion

In this review we have described the expansion of possibilities of the RGS algorithm to various
nonlocal models in mathematical physics. In the modern form this algorithm is now applicable
both to models based on differential equations and to models that also include nonlocal terms,
e.g. integro-differential and integral equations.

The new formulation of the algorithm preserves the general scheme as a sequence of four
steps, that were employed for differential models, however the form of their implementation now
takes into account the peculiarities introduced by nonlocal terms. Several routines to overcome
the difficulties with calculating the symmetry group for nonlocal models are indicated and the
procedure of prolongation of the symmetry on to solution functionals is described. The efficiency
of the algorithm is illustrated by various physical applications.

We hope that this report serves as an illustration of the universality of the RGS algorithm in
application both to models based on DEs and nonlocal (integral) equations. The possibility to
prolong the symmetry onto solution functionals enables to investigate the behavior of solution
characteristics even in the case when the explicit form of the solution is not known. The results
presented gives the promise for the progress in this field and can give rise to many potential
applications.

Acknowledgements

The authors are grateful to the organizers of the Fifth International Conference “Symmetry in
Nonlinear Mathematical Physics” for the invitation to participate in the Conference SNMP-2003
and for their warm hospitality. This work was supported by RFBR grant No. 02-01-00185, grant
of Scientific School No. 2339.2003.2 and INTAS projects (2001-0233 and 2001-0572).

[1] Kovalev V.F. and Pustovalov V.V., Functional self-similarity in a problem of plasma theory with electron
nonlinearity, Theor. Math. Phys., 1990, V.81, N 1, 1060–1071.

[2] Shirkov D.V., Several topics on renorm-group theory, in Proceedings of Second International Conference
“Renormalization group ’91” (September 1991, Dubna, USSR), Editors D.V.Shirkov and V.B. Priezzhev,
Singapore, World Scientific, 1992, 1–10;
Kovalev V.F., Krivenko S.V. and Pustovalov V.V., The renormalization group method based on group
analysis, in Proceedings of Second International Conference “Renormalization group ’91” (September 1991,
Dubna, USSR), Editors D.V.Shirkov and V.B. Priezzhev, Singapore, World Scientific, 1992, 300–314.

[3] Kovalev V.F., Pustovalov V.V. and Shirkov D.V., Group analysis and renormgroup symmetries, J. Math.
Phys., 1998, V.39, N 2, 1170–1188.

[4] Kovalev V.F. and Shirkov D.V., Bogoliubov renormalization group and symmetry of solutions in mathema-
tical physics, Physical Reports, 2001, V.353, N 4–6, 219–249; hep-th/0001210.

[5] Bogoliubov N.N. and Shirkov D.V. Application of the renormalization group to the improvement of pertur-
bation theory formulas, Doklady AN SSSR, 1955, V.103, N 3, 391–394 (in Russian);
Bogoliubov N.N. and Shirkov D.V., Charge renormalization group in quantum field theory, Nuovo Cim.,
1956, V.3, 845–863.

[6] Bogoliubov N. and Shirkov D., Introduction to the theory of quantized fields, New York, Wiley-Interscience,
1980.

[7] Shirkov D.V., The Bogoliubov renormalization group, Russian Math. Surveys, 1994, V.49, N 5, 155–176;
hep-th/9602024.

[8] Kovalev V.F., Renormalization group symmetries for solutions of boundary value problems, Acta Physica
Slovaca, 2002, V.52, N 4, 353–362.

[9] Shirkov D.V., Renormalization group in modern physics, Int. J. Mod. Phys. A, 1988, V.3, 1321–1341.

[10] Ibragimov N.H. (Editor), CRC handbook of Lie group analysis of differential equations, Boca Raton, Florida,
CRC Press, 1994, Vol. 1; 1995, Vol. 2; 1996, Vol. 3.

[11] Ovsyannikov L.V., Group analysis of differential equations, New York, Acad. Press, 1982.



The Renormalization Group Symmetry for Solution of Integral Equations 861

[12] Ibragimov N.H., Transformation groups applied to mathematical physics, Dordrecht – Lancaster, Riedel-
Publ., 1985.

[13] Ibragimov N.H., Elementary Lie group analysis and ordinary differential equations, Chichester, John Wiley
& Sons, 1999.

[14] Olver P.J., Applications of Lie groups to differential equations, New York, Springer-Verlag, 1986.

[15] Fushchich V.I., Shtelen V.M. and Serov N.I., Symmetry analysis and exact solutions of equations of nonlinear
mathematical physics, Dordrecht, Kluwer Academic Publishers, 1993.

[16] Taranov V.B., On the symmetry of one-dimensional high-frequency motions of collisionless plasma, Sov.
Phys. Tech. Phys., 1976, V.21, 720–726.

[17] Krasnoslobodtzev A.V., Gasdynamic and kinetic analogues in the theory of a vertically inhomogeneous
shallow water, Proceedings of the Institute of General Physics, Acad. of Sci. USSR, Vol. 18, Moscow,
Nauka, 33–71 (in Russian).

[18] Ibragimov N.H., Kovalev V.F. and Pustovalov V.V., Symmetries of integro-differential equations: a survey of
methods illustrated by the Benney equations, Nonlinear Dynamics, 2002, V.28, 135–153; math-ph/0109012.

[19] Chetverikov V.N. and Kudryavtsev A.G., A method for computing symmetries and conservation laws of
integro-differential equations, Acta Appl. Math., 1995, V.41, 45–56.

[20] Grigoryev Yu.N. and Meleshko S.V., Group analysis of the integro-differential Boltzmann equation, Sov.
Phys. Dokl., 1987, V.32, 874–876.

[21] Meleshko S.V., Application of group analysis in gas kinetics, in Proceedings of Inter-disciplinary Workshop on
“Symmetry analysis and mathematical modelling” (8–10 December, Mmabato, Pretoria), The International
Institute for Symmetry Analysis and Mathematical Modelling, 1998, 45–59.

[22] Kovalev V.F., Krivenko S.V. and Pustovalov V.V., Group analysis of the kinetic Vlasov equation, Differential
Equations, 1993, V.29, N 10, 1568–1578; N 11, 1712–1721.

[23] Kovalev V.F. and Shirkov D.V., Renormalization group in mathematical physics and some problems of laser
optics, J. of Nonlin. Opt. Phys. & Materials, 1997, V.6, 443–454.

[24] Kovalev V.F., Approximate transformation groups and renormgroup symmetries, Nonlinear Dynamics, 2000,
V.22, 73–83.

[25] Akhmanov S.A., Sukhorukov A.P. and Khokhlov R.V., Self-focusing and diffraction of light in a nonlinear
medium, Sov. Phys. Usp., 1968, V.10, 609–658.

[26] Kovalev V.F., Bychenkov V.Yu. and Tikhonchuk V.T., Ion acceleration during adiabatic plasma expansion:
renormalization group approach, JETP Lett., 2001, V.74, N 1, 10–14.

[27] Kovalev V.F., Bychenkov V.Yu. and Tikhonchuk V.T., Particle dynamics during adiabatic expansion of
a plasma bunch, Journal of Exp. Theor. Physics, 2002, V.95, N 2, 226–241.

[28] Kovalev V.F. and Bychenkov V.Yu., Analytic solutions to the Vlasov equations for expanding plasmas,
Phys. Rev. Lett., 2003, V.90, N 18, 185004-(1–4).


