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We apply the method of slowly-varying amplitudes of the electrical and magnetic fields
to integro-differential system of nonlinear Maxwell equations. The equations are reduced
to system of differential Nonlinear Maxwell amplitude Equations (NME). The electric and
magnetic fields are presented as sums of circular and linear components. Thus, NME is
written as a set of Nonlinear Dirac Equations (NDE). Exact solutions of NDE with classical
orbital momentum � = 1 and opposite directions of the spin (opposite charge) j = ±1/2 are
obtained. Using the Poynting vector for solutions with spin j = 1/2 we find that the energy
flow through arbitrary closed surface around our vortex solutions is zero and the localized
energy of our solutions circulate in x, y plane. Other important result is that the vortex
solutions with spin j = 1/2 without external fields are immovable. The initial investigations
on stability of these solutions show that vortices with spin j = 1/2 are stable while the
vortices with opposite spin (charge) j = −1/2 are not. The possible generalization of NME
to higher number of optical components and higher number of � and j is discussed.

1 Introduction

The interest in the nonlinear generalizations of the quantum field equations [1–3] and in the
possibility of obtaining exact stationary solitary solutions of the field equations [4, 5] increases
rapidly in the last years. As a rule, different kinds of nonlinearity have been introduced in an
ad-hoc fashion in the Klein–Gordon equation and also for all four spinor components of the Dirac
equations. For the usual case of a cubic nonlinearity, exact 3D + 1 localized solutions are not
found. Our present work, reported in this paper, shows that the optical analogy of the Nonlinear
Dirac Equations of field (NDE) leads to a nonlinear part only in the first coupled equation. This
result allows to solve the NDE by separation of variables and to obtain solutions representing
optical vortices with classical momenta one and spin one-half.

2 Maxwell’s equations with non-stationary linear
and nonlinear polarization

Consider the Maxwell’s equations in the next case: A source-free medium with non-stationary
linear and nonlinear electric polarization and non-stationary magnetic polarization. For this
case, the Maxwell’s equations can be written:

∇× �E = −1
c

∂ �B

∂t
, ∇× �H =

1
c

∂ �D

∂t
, (1)

∇ · �D = 0, ∇ · �B = ∇ · �H = 0. (2)

The linear and nonlinear electric polarization and the the linear magnetic polarization are
presented as:

�D = �P lin + 4π �Pnl, �B = �H + 4π �Mlin, (3)
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where �E and �H are the electric and magnetic intensity fields, �D and �B are the electric and
magnetic induction fields, �P lin, �Pnl are the linear and nonlinear polarizations of the medium
respectively and �Mlin is the linear magnetic polarization. The magnetic polarization (magneti-
zation) �Mlin is written as the product of the linear magnetic susceptibility η(1) and the magnetic
field �H. The nonstationary linear electric polarization can be written as:

�P lin =
∫ t

−∞

(
δ(t− τ) + 4πχ(1) (t− τ)

)
�E(τ, x, y, z)dτ

=
∫ t

−∞
ε0 (t− τ) �E (τ, x, y, z) dτ, (4)

where χ(1) and ε0 are the linear electric susceptibility and the dielectric constant respectively.
Similar expression describes the dependence of �B on �H in the case of nonstationary linear
magnetic polarization [6]:

�B =
∫ t

−∞

(
δ(t− τ) + 4πη(1) (t− τ)

)
�H(τ, x, y, z)dτ

=
∫ t

−∞
µ0 (t− τ) �H (τ, x, y, z) dτ, (5)

where η(1) and µ0 are the linear magnetic susceptibility and magnetic permeability respectively.
In the following, we will study such media with nonstationary cubic nonlinear polarization,
where the nonlinear polarization in the case of one carrying frequency can be expressed as:

�P
(3)
nl =

3
4

∫ t

−∞

∫ t

−∞

∫ t

−∞
χ(3) (t− τ1, t− τ2, t− τ3)

× �E(τ1, x, y, z) �E∗(τ2, x, y, z) �E(τ3, x, y, z)dτ1dτ2dτ3. (6)

3 Amplitude equations

We derived in a recent paper [7] the slowly varying amplitude approximation from nonlinear
integro-differential Maxwell’s equations (1)–(3) in the standard way, as it was done in [10, 11].
The electric and magnetic field amplitudes are determined by the relations:

�E(x, y, z, t) = �A(x, y, z, t) exp (i (ω0t− g(x, y, z))), (7)
�H(x, y, z, t) = �C(x, y, z, t) exp (−i (ω0t− q(x, y, z))), (8)

where �A, �C, ω0, g and q are the amplitudes of the electric and magnetic fields, the optical
frequency and the real spatial phase functions respectively. After using Fourier representation
of the response functions and of the amplitude functions �A (and �C), and also the fact that
∇ · �D ≈ ∇ · �E ≈ ∇ · �A ≈ 0 [8], we obtain the following system of Nonlinear Maxwell vector
amplitude Equations (NME), written in dimensionless variables:

∇× �A = iα2
�C − δ

∂ �C

∂t
, (9)

∇× �C = iα1
�A+

∂ �A

∂t
+ iγ1

(
�A · �A∗) �A, (10)

∇ · �A = 0, ∇ · �C = 0. (11)
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where α1,2, δ and γ1 are constants. The gradient of the spatial phase functions g and q satisfied
the additional relations:

∇g × �A = 0, ∇q × �C = 0. (12)

The phase functions which satisfied (12) are determined in Section 6.

4 Dirac representation of NME

To solve the NME (9)–(11), we apply the method of separation of variables. The slowly varying
amplitude vector of the electric field �A and the magnetic field �C are represented as:

�A (x, y, z, t) = �F (x, y, z) exp (i∆αt), �C (x, y, z, t) = �G (x, y, z) exp (i∆αt). (13)

Substituting these forms into the NME (9)–(11) we obtain:

∇× �F = −iν2
�G, (14)

∇× �G = iν1
�F + iγ1

(
�F · �F ∗)�F , (15)

∇ · �F = 0, ∇ · �G = 0, (16)

where ν1 = α1 + ∆α, ν2 = δ∆α − α2 > 0 are constants. When the electric and magnetic fields
are represented as a sum of a linear polarization component and a circular polarized one it is
possible to reduce equations (14)–(16) to a system of four nonlinear equations. Substituting [9]:

ψ1 = iFz, ψ2 = iFx − Fy, ψ3 = −Gz, ψ4 = −Gx − iGy (17)

into the nonlinear system (14)–(16), we obtain a stationary nonlinear Dirac system of equations
(NDE):

(
∂

∂x
− i

∂

∂y

)
Ψ4 +

∂

∂z
Ψ3 = −i

(
ν1 + γ1

2∑
i=1

|Ψi|2
)

Ψ1, (18)

(
∂

∂x
+ i

∂

∂y

)
Ψ3 − ∂

∂z
Ψ4 = −i

(
ν1 + γ1

2∑
i=1

|Ψi|2
)

Ψ2, (19)

(
∂

∂x
− i

∂

∂y

)
Ψ2 +

∂

∂z
Ψ1 = −iν2Ψ3, (20)(

∂

∂x
+ i

∂

∂y

)
Ψ1 − ∂

∂z
Ψ2 = −iν2Ψ4. (21)

The system (18)–(21) is the optical analog of the nonlinear Dirac equations (NDE). Note that
the optical NDE are significantly different from the NDE in the field theory. The nonlinear part
appears only in the first two coupled equations of the system.

5 Hamiltonian representation of the NDE.
First integrals for vortex solutions with spin j = ±1/2

It is not difficult to show that for the NDE system of equations (18)–(21) the Hamiltonian has
the form:

H =
(
�σ · �P )+

2∑
i=1

|Ψi|2, (22)
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By virtue of it, equations (18)–(21) can be rewritten:

HΨ = εΨ, (23)

where ε = (−iν1,−iν1,−iν2,−iν2) is the energy operator. Here we investigate the case where
the nonlinear part of the equation is represented as a number of spinors with a scalar sum that
depends only on the radial component

2∑
i=1

|Ψi (r, θ, ϕ)|2 = F (r) . (24)

We also introduce here the well known orbital momentum operator �L, own orbital (spin) mo-
mentum �S, and the full momentum �J . It is straightforward to show that the Hamiltonian (22)
of equation (23) commutes with the operators �J 2 and Jz (the z-projections must be x or y).
Using these symmetries and the condition that the nonlinearity is of Kerr type, we can solve the
NDE equations (23) by a separation of variables technique. We look for solutions in the form:

Ψ1 = a (r) ΩjlM , (25)
Ψ2 = a (r) ΩjlM , (26)
Ψ3 = ib (r) Ωjl′M , (27)
Ψ4 = ib (r) Ωjl′M , (28)

where Ωjlm is the spherical spinor, l + l′ = 1, and a (r) and b (r) are arbitrary radial functions.
Using the symmetries of (23) and the fact that the nonlinear parts depend on r we separate
variables and obtain the following system of equations for the radial part:

∂a (r)
∂r

+
1 + χ

r
a (r) = −ν2b (r) , (29)

∂b (r)
∂r

+
1 − χ

r
b (r) = ν1a (r) + γ|a (r)|2a (r) , (30)

where

χ = l (l + 1) − j (j + 1) − 1/4. (31)

Excluding b(r) from the system (29)–(30), we obtain the equation for a(r):

ν1ν2a(r) +
∂2a

∂r2
+

2
r

∂a

∂r
− (1 + χ)χ

r2
a+ ν2γ|a|2a = 0. (32)

The case of optical spinors with spin j = ±1/2 corresponds to localized solutions with χ = 1
and spherical spinors with l = 1 and j = ±1/2. The spherical spinors are a spinor generalization
of usual spherical functions and the spinors (25)–(28) can by written directly in this case:

Ψ1 = a (r) cos (θ) , Ψ2 = a (r) sin (θ) eiϕ, Ψ3 = −ib (r) , Ψ4 = 0, (33)

for j = 1/2 and

Ψ1 = a (r) sin (θ) e−iϕ, Ψ2 = −a (r) cos (θ) , Ψ3 = 0, Ψ4 = −ib (r) , (34)

for j = −1/2.
After substituting solutions (33)–(34) into equations (23) and excluding b(r) from the radial

system (29)–(30), we obtained the following equation for a(r):

ν1ν2a(r) +
∂2a

∂r2
+

2
r

∂a

∂r
− 2
r2
a+ ν2γ|a|2a = 0. (35)
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This system has exact vortex de Broglie soliton solutions [4] in the form:

a (r) =
√

2
i

exp
(
i
√
ν1ν2r

)
r

, (36)

if ν2γ1 = 1. The complete solutions for these two cases are written:

(
Ψ1

Ψ2

)
=




√
2
i

exp(i
√
ν1ν2r)
r

cos (θ)
√

2
i

exp(i
√
ν1ν2r)
r

sin (θ) exp (iϕ)


 , (37)

(
Ψ3

Ψ4

)
=




√
2

iν2

(
i
√
ν1ν2 exp (i

√
ν1ν2r)

r
+

exp i(
√
ν1ν2r)

r2

)
0


 , (38)

for j = 1/2 and

(
Ψ1

Ψ2

)
=




√
2
i

exp(i
√
ν1ν2r)
r

sin (θ) exp− (iϕ)

−√
2

i

exp(i
√
ν1ν2r)
r

cos (θ)


 , (39)

(
Ψ3

Ψ4

)
=




0

−√
2

iν2

(
i
√
ν1ν2 exp (i

√
ν1ν2r)

r
+

exp i(
√
ν1ν2r)

r2

)

 , (40)

for j = −1/2. The equation (32) admits exact “de Broglie” soliton solutions for arbitrary
number of χ, but as we remember our solutions are limited by the conditions (24), the nonlinear
part to depend only on the radial components. The condition (24) for a number χ ≥ 1 can be
fulfilled also for a higher number of fields with different frequencies. This case includes also the
parametric processes.

6 Spatial phase functions, Poynting vector
and the flow of energy

In a previous paper [7] we investigate the localized energy of our vortex solutions. A spectral
region and dispersion parameters of a paramagnetic media were found, where the solutions
admit finite energy. The type of the phase functions which satisfied (12) is determined for
vortex solutions (33) with spin j = 1/2. Using again the relations between the spinors of NDE
and the amplitude functions (17) we have:

Fx =
ψ2 − ψ∗

2

2i
, Fy =

ψ2 + ψ∗
2

2
, Fz =

ψ1 − ψ∗
1

2i
, (41)

Gx = −ψ4 + ψ∗
4

2
, Gy = −ψ4 − ψ∗

4

2i
, Gz = −ψ3 − ψ∗

3

2i
. (42)

Substituting the solutions (33) with spin j = 1/2 in (41)–(42) for arbitrary real a(r) and b(r)
we obtain:

Fx = −a(r)x
r
, Fy = −a(r)y

r
, Fz = −a(r)z

r
, (43)

Gx = 0, Gy = 0, Gz = b(r). (44)
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We rewrite again the conditions for the spatial phase functions:

∇g × �F = 0, ∇q × �G = 0. (45)

These relations for solutions of kind (43)–(44) are satisfied only when:

g = k0r or g = k0f(r) and q = k0z or q = k0f(z), (46)

where k0 is the carrying wave number. The spatial phase functions of kind g = k0r and q = k0z
correspond to spectral limited pulses which satisfied additional relations �k�r = const. The
spatial phase functions of kind g = k0f(r) and q = k0f(z) correspond to phase modulated pulses
and for them the relations �k�r = const is not satisfied. The Poynting vector can be expressed
by the amplitude functions of the electrical and magnetic field:

�S = �E(x, y, z, t) × �H(x, y, z, t)

= exp (i (W (t) − q(z) ± g(r))) �F (x, y, z, t) × �G(x, y, z, t), (47)

where q and g are scalar phase functions. Substituting the solutions with spin j = 1/2 in above
expression we find that:

�S = exp (i (W (t) − q(z) ± g(r)))
(
−a(r)b(r)y

r
; a(r)b(r)

x

r
; 0
)
. (48)

We see that the Poynting vector �S is one circulation vector for solutions with spin j = 1/2 and
its divergency is zero:

∇ · �S = 0. (49)

The relation (49) determines that the energy flow through arbitrary closed surface around our
vortex solutions with spin j = 1/2 is zero. The relation (48) shows that flow of energy of
our solutions circulate in x, y plane. We generalize the above results for solutions with spin
j = 1/2: The vortex solutions with spin j = 1/2 without external fields are immovable and
electromagnetic energy oscillates in x, y plane. The electrical field oscillates spherically, in ‘r’
direction, while the magnetic field oscillates in z direction. In the same way the Poynting vector
was calculated for solutions with spin j = −1/2. For them we obtain that ∇ · �S �= 0 and we
expect that they are not stable. Exact investigation of stability requires investigation also of
the perturbation of the Poynting vector and will be discussed in a further paper.

7 Conclusion

We have shown that in cases of linear and circularly polarized components of the electric and
magnetic fields, the NME reduces to the Nonlinear Dirac system of equations (NDE). The equa-
tions are represented in a spinor form. Using the method of separation of variables, exact vortex
solutions have been obtained. The optical vortex solutions admit classical orbital momentum
l = 1 and classical own momentum j = ±1/2. The energy integral of the vortex solutions is
finite only in some special cases of paramagnetic media with suitable conditions on linear electric
and magnetic dispersion. Using the Poynting vector for solutions with spin j = 1/2 we find that
the energy flowing through arbitrary closed surface around our vortex solutions is zero and the
localized energy of our solutions circulates in x, y plane. Other important result is, that the
vortex solutions with spin j = 1/2 without external fields are immovable. The electrical field in
the vortices oscillating spherically, while the magnetic field oscillating in z direction. The initial
investigations on stability of these solutions show the following: While the vortices with spin
j = 1/2 are stable, the vortices with opposite spin (charge) j = −1/2 are not. All of the above
results will be discussed later in relation with nonlinear field theory.
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